

2019-05-17

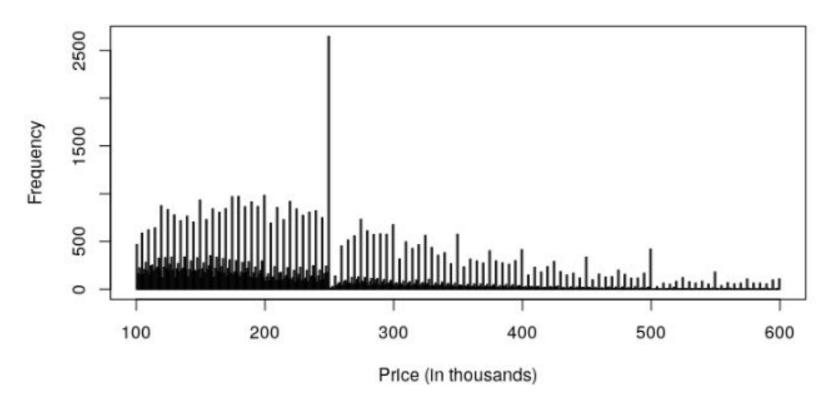
The Odd One(s) Out

Thies Lindenthal & Carolin Schmidt

htl24@cam.ac.uk carolin.schmidt@zew.de

Two core observations motivate our paper

First: Observed transaction prices follow a "ruler distribution"

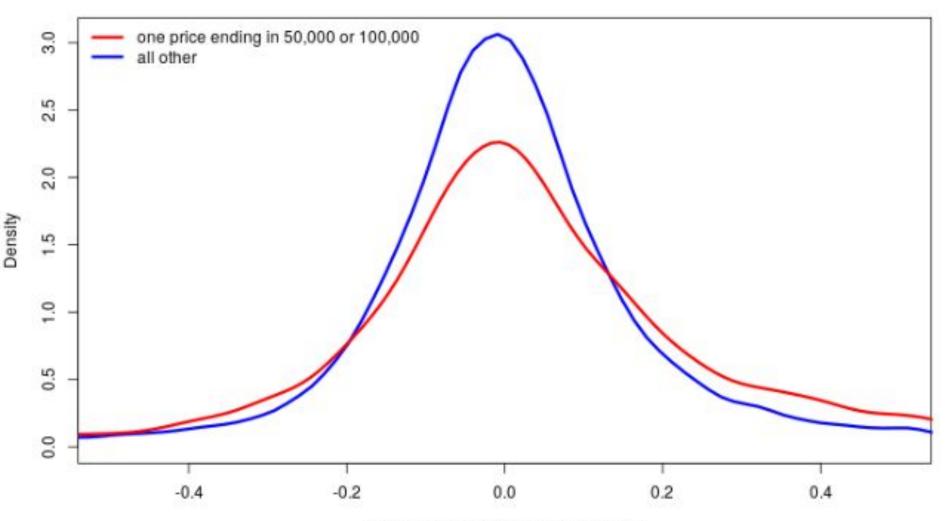


- Disproportionally high share for round prices (e.g. multiples of 10K/25K/50K)
- Prices get coarser with price levels (Ball et al., 1985; Thomas et al., 2010)

Second: Round prices are less precise...

... larger deviations from fundamentals.

Distribution of residuals from repeat sales regression

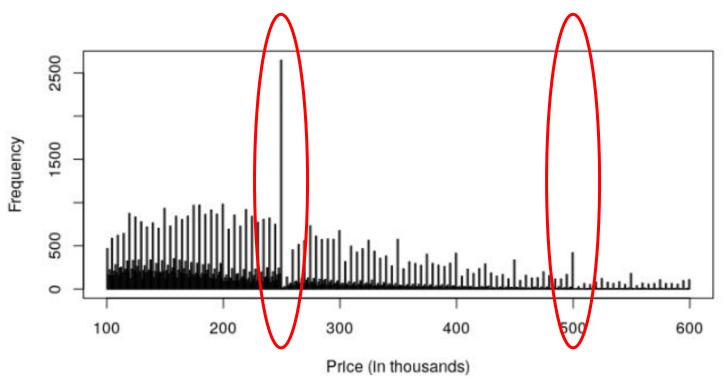


Residuals, Repeat Sales Regression

This effect is robust, not driven by tax subsidy thresholds

These UK-specific price regions have been excluded from analysis

- 250K "Help to buy" scheme
- 500K first time buyer stamp duty discount (since 2018)



Negotiated sales prices, not asking prices

British way(s) of trading houses

- Guide price set by seller
- Potential purchasers hand in sealed bids
- The seller is not bound to accept the highest offer,
 - She can pick any (or none)
 - Estate agents often facilitate the trade and, often, strategically release information

• In England and Wales, the terms of an offer remain subject to contract

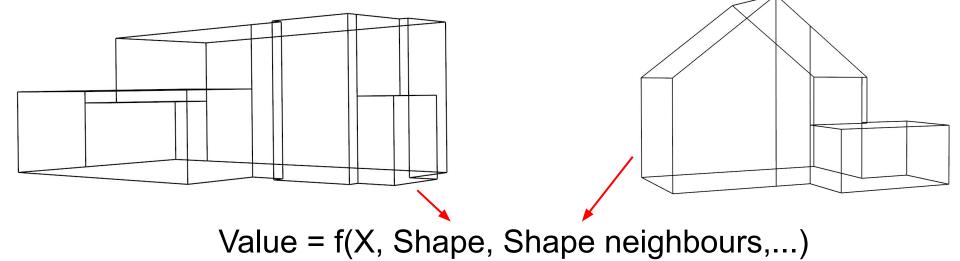
- No-one is legally obliged to continue with the transaction until the formal contract has been signed and the parties have exchanged the contracts
- Transactions take months
- Both sides have to assess the risk of transaction falling through
- In Scotland, transactions are binding earlier in the process

What is so special about round prices? Why do we care?

- Direct applications
 - Reliability of comparables when valuing individual buildings
 - Mass appraisal systems
 - Signalling in negotiations
 - Design decisions when developing
- Round prices offer insights on human decision making
 - When are we confident deciders? In which cases is it difficult to make a judgement?

Value of aesthetics / architecture / preferences / beauty Paper is part of a larger research theme on "human" side of property

 "Beauty in the Eye of the Home-Owner: Aesthetic Zoning and Residential Property Values" (REE, 2017)



"Machine Learning, Building Vintage and Property Values" (Lindenthal, Johnson)

What is our contribution to the literature?

P(round price | sale) = f(buyer and seller factors, market factors, asset factors)

- There is rich theoretical & empirical research on round vs. precise numbers
 - general psychology, retail, negotiations, sport
- Most research focuses on the psychological aspect of these numbers
 - In real estate, round transaction prices investigated by Palmon et al. (2004) and Beracha and Seiler (2013)
- We show that market conditions and asset characteristics influence the salience of these mental traits
 - Heterogeneity of real estate creates variation in the likelihood of observing a round price
 - Some buildings are easier to value than others the price reveals the relative difficulty
 - Reliability of observed prices is dynamic

Buyers and sellers

Amateurs and experts alike use mental shortcuts, consciously or unconsciously

- Heaping (uncertainty or inability)
 - Age (A'Hearn et al., 2009): dyscalculics tend to report their age as a multiple of five or other attractive numbers
 - Analyst forecasts (Herrmann and Thomas, 2005)
- Conformist behaviour
 - ½-carat diamonds sell at an 18% premium relative to diamonds slightly < ½ carat (Scott and Yelowitz, 2010)

• Institutional rules, familiarity, efficiency

- Stock and commodity prices end in even/round numbers even though finer pricing is permitted (Osborne, 1962; Niederhoffer, 1966; Ball et al., 1985)
- Simplification of financial record processing (Stevenson and Bear, 1970)
- Round prices are easier to process (Tversky and Kahneman, 1973)

Digit preference

 Best drug dosage? Such that 20 drops of cough syrup three times a day are effective in ~90% of the cases (Herxheimer, 1991)

Sellers (and buyers?) want to achieve thresholds

Similar to motivation of Marathon runners (Allen et al., 2017)

- For a seller, it is gratifying to exceed a mental mark, willing to push just a bit harder "on the last mile"
- What about buyers? Shouldn't they have the opposite motivation?
 - 100 Number of finishers (in thousands) 80 60 40 20 0 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 7:00 Finishing time (one-minute increments)
 - Buyers vs sellers markets?

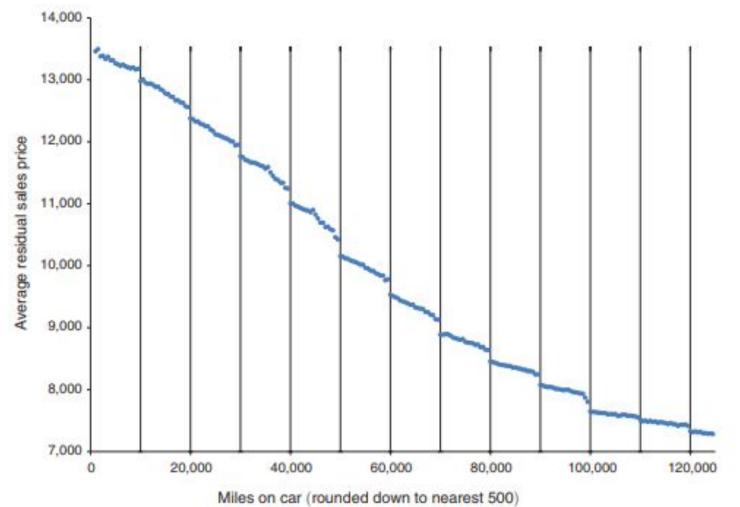
Some use coarse prices strategically

- Cheap-talk model (Backus et al., 2015)
 - Sellers advertising at round prices signal their willingness to negotiate (lower TOM)
 - Precise-price advertisers achieve higher final sales prices on average (higher TOM)
- Negotiation efficiency hypothesis (Harris, 1991)
- Round list prices speed up transactions
- Palmon et al. (2004) on clustering in real estate prices
 - List prices more often just-below-even ending, transaction prices more even-ending
 - NEH predicts even-ending transaction prices, especially when information on the property is scarce & costly to obtain
- Psychological literature: coarse numbers signal uncertainty, precise numbers confidence and knowledge
 - "One year" versus "365 days"
 - Yaniv and Foster (1995), Goldsmith et al. (2002), Zhang and Schwarz (2013), Mason et al. (2013)

A (hypothetical) blue book for homes...

... could explain discontinuities in price distributions

• Left digit bias, due to limited information-processing ability (Lacetera et al., 2012)



Uncertainty about marginal prices for attributes

High uncertainty for hedonic coefficients due to low number of comparables?

- Liquidity (information on market)
 - Low # comparables implies high quality uncertainty (Martel, 2018)
 - Everything else equal, lower liquidity and fewer comparables should lead to more round prices being observed.
- Quality uncertainty (information on building)
 - Prices cluster when asset values are uncertain (Ball et al., 1985; Binder, 2017)
 - Listings are notoriously vague. Square footage? Damp? Noise? Sitting tenants?
 - Similarly: firm valuation is more subjective and variable for young firms with a short earnings history (Baker and Wurgler, 2006)

• Asset uniqueness (combination of both)

- How to quantify and value uncommon specifications?
- Extreme values or interaction terms reduce # relevant comparables, driving up uncertainty
 - Value of detached house with garage in Romsey Town?

Uncommon combination (style and location)

Uncommon attributes

Empirical strategy

Can we predict the occurrence of round prices?

- We cannot observe buyers' and sellers' characteristics or motivation
 - Omit (for now)
- Information on market liquidity from universe of sales (land registry)
 - Sales are geocoded and have time stamps
 - Number of comparables in previous x months within y miles from each building
- Information on asset uniqueness from limited set of hedonics and computer vision
 - Derive additional variables from images
 - Model asset uniqueness directly

More comparables reduce odds of round prices

More information on the local market makes it easier to value a property

- Probit regression on round price
 - Controlling for location at postcode and streetlevel
 - Year
 - Hedonics: size/volume, new, vintage
 - Price band (50K buckets)
- Price is defined as being "round" if it is a multiple of £25K
 - Is 275,000 more round than 280,000?
- Core variable of interest: # comparables
 - Number of sales in same postcode in preceding 12 months as number of comps.

Probit estimates Cambridge submarket —

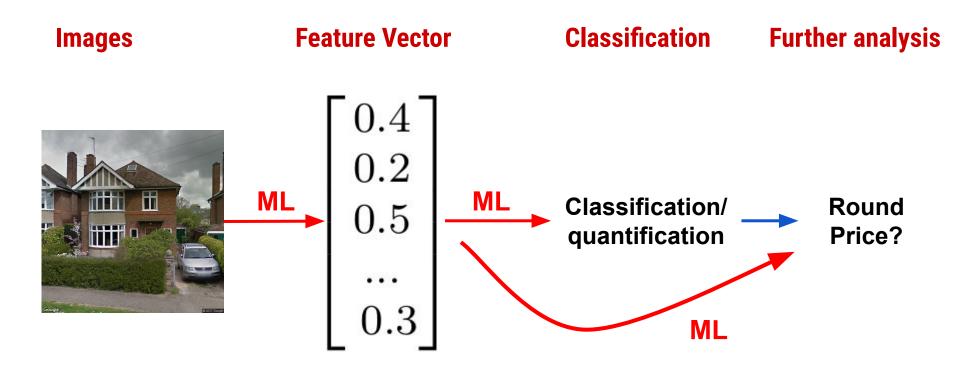
- Hedonics & Vintage
- Location
- Year
- Price band

UNIVERSITY OF CAMBRIDGE

	Dependent variable:		
	round price		
new-built	0.014		
	(0.070)		
$\ln(\text{area}, m^2)$	0.133***		
	(0.039)		
$\ln(\text{volume}, m^3)$	-0.004		
	(0.005)		
ln(num. comps)	-0.032**		
	(0.015)		
Constant	-1.389^{***}		
	(0.355)		
Observations	24,035		
Log Likelihood	-7,506.127		
Akaike Inf. Crit.	$15,\!222.250$		
Note:	*p<0.1; **p<0.05; ***p<0.01		

From computer vision to economic analysis

Deriving additional variables / model uniqueness directly

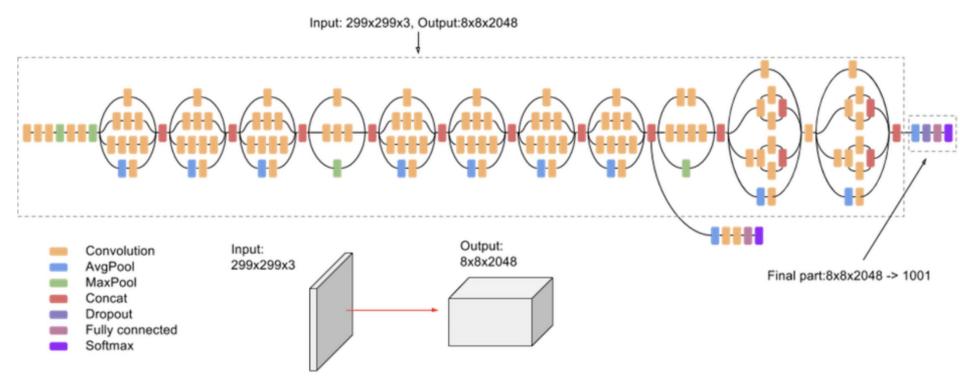


Computer vision, off the shelf

Deep convolutional neural network to obtain feature vectors

- Pre-trained Inception v3 model in Tensorflow API
 - Convolutional: Exceptionally suitable to detect era specific details such as window styles, ratios, brickwork, ratios
 - Freely available & frequently used

• Penultimate layer is 2048 dimensional feature vector



DNN Design

- Testing many specifications
- Compromise across geographic scope and # variables

Layer	Type	$Output\ Shape$	Activation	# Parameters		
UK: Base						
1	Dense	None, 37	ReLu	2,331		
2	Dense	None, 18	ReLu	684		
3	Dense	None, 1	Sigmoid	19		
total				3,034		
		Cambridge:	: Base			
1	Dense	None, 10	ReLu	280		
2	Dropout	None, 10		0		
3	Dense	None, 1	Sigmoid	11		
total				291		
3		Cambridge:	· Vint.			
1	Dense	None, 18	ReLu	828		
2	Dropout	None, 18		0		
3	Dense	None, 1	Sigmoid	19		
total				847		
Cambridge: Vint. & Inception						
1	Dense	None, 837	ReLu	1,752,678		
2	Dropout	None, 837		0		
3	Dense	None, 1	Sigmoid	838		
total				1,753,516		
-				201		

UNIVERSITY OF CAMBRIDGE

Notes: The training data for Cambridge are matrices of size $4,400 \times 27$ (Base) $4,400 \times 45$ (Vint.) $4,400 \times 2093$ (Vint. & Inception).

Training on balanced training set

First for the UK (100K sample)

- For the UK, we have basic hedonics only but # comps!
- Same number of round/non-round sales in training
 - Out of samples test realistic (using unseen data, ~11% round)

obs	observed: not round	
Unbalanced out-of-sample t	est, UK	
prediction: not round	72,764	3,292
prediction: round	20,452	3,492
recall	0.78	0.51
precision	0.96	0.15
F_1 -score	0.86	0.23

• F₁-score: 2 (recall * precision) / (recall + precision)

Zooming in on Cambridge

Basic hedonic variables (area/volume) don't boost predictive power much

•	Precision	for	"round"	improves,	recall	does not
---	-----------	-----	---------	-----------	--------	----------

	observed: not round	
Unbalanced out-of-sam	ple test, UK	,
prediction: not round	72,764	3,292
prediction: round	20,452	3,492
recall	0.78	0.51
precision	0.96	0.15
F_1 -score	0.86	0.23
Unbalanced out-of-sam	ple test, Cambridge, base	
prediction: not round	3,691	334
prediction: round	748	247
recall	0.83	0.43
precision	0.92	0.25
F_1 -score.2	0.87	0.31

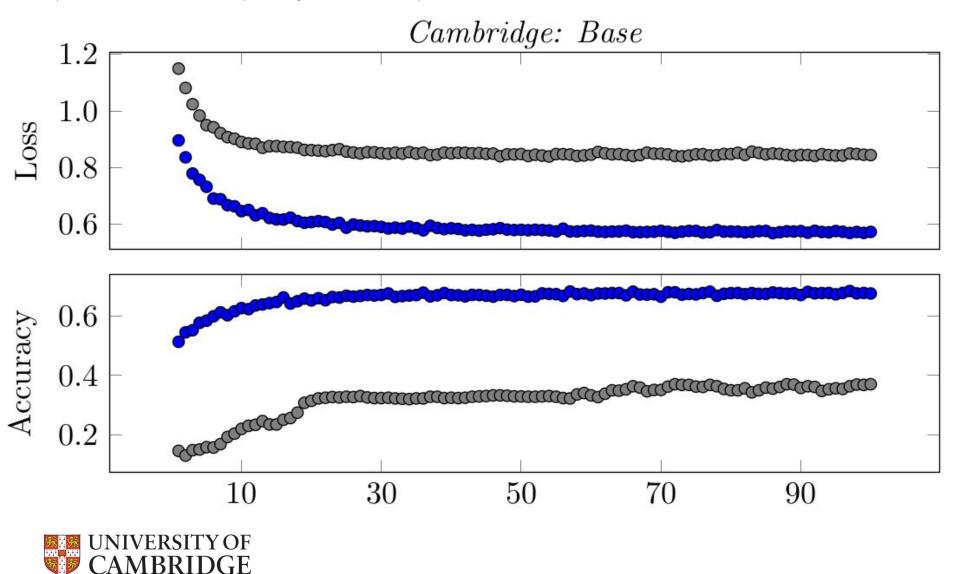
Add more information derived from images

Can we spot the odd ones out?

		observ	ed: not round	observed: round
_	Deee line	Unbalanced out-of-sample test,	Cambridge, base	
•	Base line	prediction: not round	$3,\!691$	334
	1	prediction: round	748	247
		recall	0.83	0.43
	1 +	precision	0.92	0.25
	•	F_1 -score.2	0.87	0.31
•	Vintage	Unbalanced out-of-sample test,	Cambridge, vint	age estimates
	Classifications	prediction: not round	$3,\!402$	261
		prediction: round	1,037	320
	1	recall	0.77	0.55
		precision	0.93	0.24
	1 -	F_1 -score.1	0.84	0.33
	•	Unbalanced out-of-sample test,	Cambridge, Vint	tage and Inception vec.
•	"Raw" feature	prediction: not round	$3,\!134$	269
	vectors	prediction: round	1,305	312
		recall	0.71	0.54
		precision	0.92	0.19
		F_1 -score	0.80	0.28

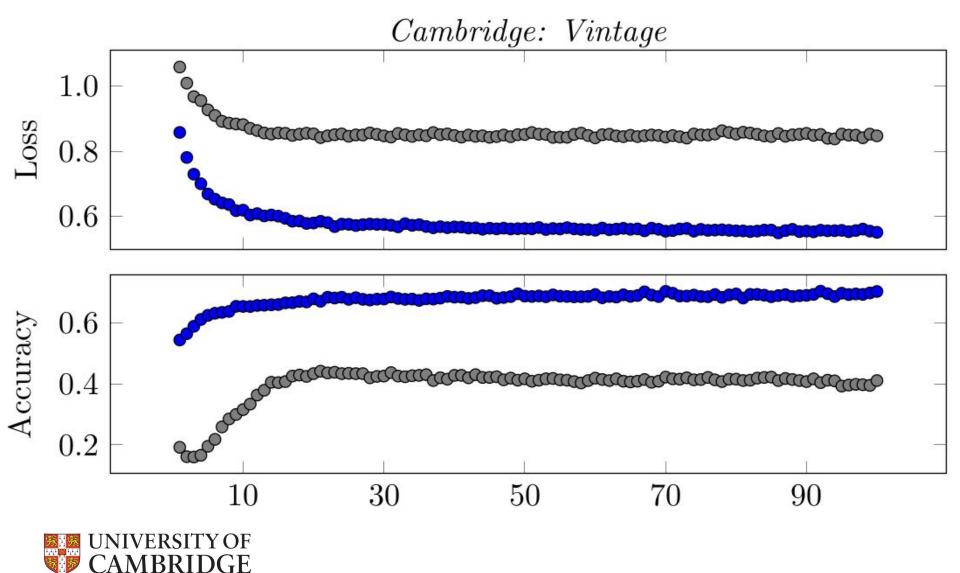
Well-behaved training curves

(core hedonics, liquidity measures)

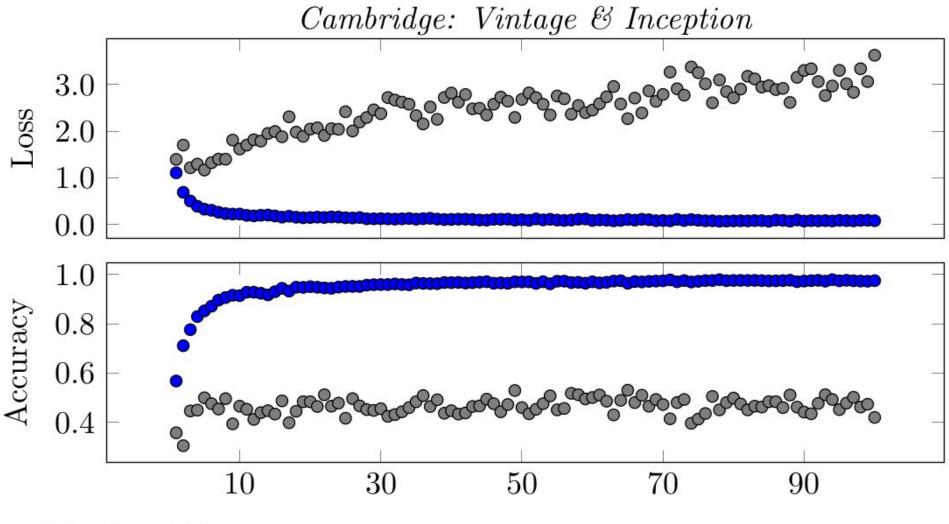


Most training done after ~20 epochs

Adding vintage of house and neighbouring buildings



Oops. Overfitting. Clearly not optimal.



Reverse regressions: Putting black box into context Adding the ML classification as another regressor

$$ln\left(\frac{RoundPrice_i}{1-RoundPrice_i}\right) = \alpha + \beta_{Classifier_C}Classification_{C,i} + \sum_{h=1}^{H} \beta_h H_{h,i} + \epsilon_i$$

TT

	Base	Vint.	Vint. & Incep.	Base	Vint.	Vint. & Incep.
Constant	$\begin{array}{c} -2.403^{***} \\ (0.057) \end{array}$	-2.568^{***} (0.064)	-2.455^{***} (0.064)	-3.718^{***} (0.580)	-4.193^{***} (0.582)	-4.409^{***} (0.571)
ML Classification	$1.294^{***} \\ (0.093)$	$\begin{array}{c} 1.392^{***} \\ (0.091) \end{array}$	1.024^{***} (0.089)	$\frac{1.252^{***}}{(0.096)}$	$\frac{1.365^{***}}{(0.093)}$	0.971^{***} (0.090)
Type: Detached				$0.082 \\ (0.168)$	$0.154 \\ (0.169)$	-0.033 (0.166)
Type: Semi-det.				$0.099 \\ (0.112)$	$0.172 \\ (0.114)$	-0.041 (0.110)
$\ln(\text{floorplate})$				0.355^{***} (0.134)	0.386^{***} (0.134)	$egin{array}{c} 0.514^{***} \ (0.131) \end{array}$
$\ln(\# \text{ comp.} + 1)$				-0.076 (0.060)	-0.020 (0.060)	-0.053 (0.058)
Observations Log Likelihood Akaike Inf. Crit.	5,020 -1,709 3,421	5,020 -1,682 3,368	5,020 -1,733 3,471	5,020 -1,698 3,408	5,020 -1,671 3,354	5,020 -1,722 3,455

Next steps

Boost sample size & open the black box (a tiny bit)

- Broaden ML sample beyond Cambridge
 - Focus on buildings that had round transactions
- Black box, "Why should I trust you?" Ribeiro, Singh & Guestrin (2016)
 - Which features influence the classifier most?

(a) Original Image

(b) Explaining *Electric guitar* (c) Explaining *Acoustic guitar* (d) Explaining

(d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google's Inception neural network. The top 3 classes predicted are "Electric Guitar" (p = 0.32), "Acoustic guitar" (p = 0.24) and "Labrador" (p = 0.21)

Why build like this? K.I.S.S.? Burntwood Manor, Staffordshire (by Taylor Wimpey)

A'Hearn, B., Baten, J. and Crayen, D. (2009). Quantifying Quantitative Literacy: Age Heaping and the History of Human Capital. *Journal of Economic History* 69(3), 783–808.

Allen, E., Dechow, P., Pope, D. and Wu, G. (2017). Reference-Dependent Preferences: Evidence from Marathon Runners. *Management Science* 63(6), 1657–1672.

Baker, M. and Wurgler, J. (2006). Investor Sentiment and the Cross-Section of Stock Returns. *Journal of Finance* 61(4), 1645–1680.

Ball, C., Torous, W. and Tschoegel, A. (1985). The Degree of Price Resolution: The Case of the Gold Market. *Journal of Futures Markets* 5(1), 29–43.

Beracha, E. and Seiler, M. (2013). The Effect of Listing Price Strategy on Transaction Selling Prices. *Journal of Real Estate Finance and Economics* 49(2), 237–255.

Binder, C. (2017). Measuring uncertainty based on rounding: New method and application to inflation expectations. *Journal of Monetary Economics* 29, 1–12.

Goldsmith, M., Koriat, A. and Weinberg-Eliezer, A. (2002). Strategic regulation of grain size in memory reporting. *Journal of Experimental Psychology: General* 131(1), 73–95.

Harris, L. (1991). Stock Price Clustering and Discreteness. *Review of Financial Studies* 4(3), 389–415.

Herrmann, D. and Thomas, W. (2005). Rounding of Analyst Forecasts. *Accounting Review* 80(3), 805–823.

Herxheimer, A. (1991). How much drug in the tablet? *The Lancet* 337, 346–348.

Lacetera, N., Pope, D. and Sydnor, J. (2012). Heuristic Thinking and Limited Attention in the Car Market. *American Economic Review* 102(5), 2206–2236.

Martel, Jordan (2018). Quality Uncertainty in Housing Markets. Working paper.

Mason, M., Lee, A., Wiley, E. and Ames, D. (2013). Precise offers are potent anchors: Conciliatory counteroffers and attributions of knowledge in negotiations. *Journal of Experimental Social Psychology* 49(4), 759–763.

Niederhoffer, V. (1966). A New Look at Clustering of Stock Prices. *Journal of Business* 39(2), 309–313.

Osborne, M. (1962). Periodic Structure in the Brownian Motion of Stock Prices. *Operations Research* 10(3), 345–379.

Palmon, O., Smith, B. and Sopranzetti, B. (2004). Clustering in Real Estate Prices: Determinants and Consequences. *Journal of Real Estate Research* 26(2), 115–136.

Ribeiro, M., Singh, S. and Guestrin, C. (2016). "Why should I trust you?" Explaining the Predictions of Any Classifier. *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, 1135–1144.

Scott, F. and Yelowitz, A. (2010). Pricing anomalies in the market for diamonds: evidence of conformist behavior. *Economic Inquiry* 48(2), 353–368.

Stevenson, R. and Bear, R. (1970). Commodity Futures: Trends of Random Walks? *Journal of Finance* 25(1), 65–81.

Thomas, M., Simon, D. and Kadiyal, V. (2010). The Price Precision Effect: Evidence from Laboratory and Market Data. *Marketing Science* 29(1), 175–190.

Tversky, A. and Kahneman, D. (1973). Availability: A Heuristic for Judging Frequency and Probability. *Cognitive Psychology* 5, 207–232.

Yaniv, I. and Foster, D. (1995). Graininess of Judgment Under Uncertainty: An Accuracy–Informativeness Trade-Off. *Journal of Experimental Psychology: General* 124(4), 424–432.

Zhang, Y. and Schwarz, N. (2013). The power of precise numbers: A conversational logic analysis. *Journal of Experimental Social Psychology* 49(1), 944–946.

