

# Integration of Funding and Market Liquidity in Real Estate: International Evidence

#### Dorinth van Dijk (De Nederlandsche Bank) & Marc Francke (University of Amsterdam)

Weimer School 2019

May 17, 2019

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��

Model 0000000

Concept

Results 000000000 Conclusions O

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

References

### Idea and contribution

- Regional private real estate markets move in tandem
- This holds for returns as many studies show
- But to what extent does this apply to liquidity?
- And is the integration stronger or weaker?
- And are there differences across asset classes and countries?

## Idea and contribution

Concept

- We estimate investor demand en supply indexes for eight different asset-country combinations (Van Dijk, Geltner, and van de Minne, 2018)
- We compare the degree of integration of both returns and market liquidity for different countries and asset classes
- We examine one particular driver behind this commonality: funding liquidity
- Prices are determined by both space and capital markets and liquidity more by capital markets (which are more integrated than space markets)
- Implications for aggregate portfolio liquidity risk and policy regarding capital markets



- Market liquidity within a country and asset class shows strong co-movements
- Market liquidity shows stronger commonalities than returns in almost all markets
- Reservation prices lie closer together in residential markets than in commercial markets
- Residential markets are more integrated
- Funding liquidity is an important driver of the commonality in market liquidity

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで



### Reservation prices and liquidity: normal market



◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶



#### Reservation prices and liquidity: booming market





Reservation prices and liquidity: crashing market



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



Econometric strategy

- Estimate supply and demand indexes for regional commerical and residential real estate markets in the US, UK, and The Netherlands (Van Dijk et al., 2018), model here
- Calculate midpoint prices and liquidity metrics:

$$\beta_t = \frac{\beta_t^b + \beta_t^s}{2}$$
(1)  
$$Liq_t = \frac{\beta_t^b - \beta_t^s}{\beta_t}.$$
(2)

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで



#### dvandijk.shinyapps.io/AppLiqInt\_HH2019/



Results 000000000

# Econometric strategy

- Measure integration of prices and liquidity based on two measures: "R<sup>2</sup>"-measures and PCA
- PCAs are estimated for each country-asset combination, degree of integration is determined the explanatory power of the first factor
- $R^2$  measures are calculated as follows: (Roll, 1988; Morck et al., 2000; Karolyi et al., 2012)

$$r_{i,t} = \alpha_i^{Ret} + r_{m,t}\beta_i^{Ret} + \varepsilon_{i,t}^{Ret}$$
(3)

$$Liq_{i,t} = a_i^{Liq}Liq_{i,t-1} + D_{\tau} + \omega_{i,t}^{Liq}$$
(4)

$$\hat{\omega}_{i,t}^{Liq} = \alpha_i^{Liq} + \sum_{j=-1}^{1} \hat{\omega}_{m,t+j}^{Liq} \beta_{i,j}^{Liq} + \varepsilon_{i,t}^{Liq}$$
(5)

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで



- Indexes are estimated for 8 CRE markets in the US (RCA), 7 CRE and RES markets in the UK (RCA/HMLR), and 4 CRE and RES markets in NL (RCA/Kadaster)
- In total more than 110K and 22MLN RES transactions
- Assumption of model is that whole property universe is observed (capture rate RCA 2000–2018 > 90%, capture rates RES  $\approx$  100%)
- Data on (national) credit conditions from Fed SLOOS, BoE CCS, ECB BLS

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

• CRE: 2005Q1 – 2018Q4, RES: 2000Q1 – 2017Q4

Concept 000 Model 0000000 Results •00000000 Conclusions 0 References

# US CRE liquidity commonality



◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの

| cept | Model   | Results | Conclusions | Reference |
|------|---------|---------|-------------|-----------|
|      | 0000000 | 0000000 | 0           |           |
|      |         |         |             |           |

# US CRE price commonality



Prices seem less correlated accross MSAs



- Returns show less commonality than changes in liquidity
- RES markets more integrated than CRE markets





• Similar results



# US CRE market liquidity and credit conditions of US CRE loans



▲□▶▲□▶▲□▶▲□▶ ▲□■ のQ@



Funding liquidity and market liquidity in VARs (1/4)



Market liquidity responds negatively to a shock in funding liquidity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

• Based on VAR with  $\Delta CC$  and  $CF_{\Delta Liq}$ 

| Concept | Model  | Results    | Conclusions | References |
|---------|--------|------------|-------------|------------|
| 000     | 000000 | 0000000000 | 0           |            |

Funding liquidity and market liquidity in VARs (2/4)



▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

• Also in UK commerical



Funding liquidity and market liquidity in VARs (3/4)



▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

#### And in UK commercial

| Concept | Model   | Results  | Conclusions | References |
|---------|---------|----------|-------------|------------|
| 000     | 0000000 | 00000000 | 0           |            |

Funding liquidity and market liquidity in VARs (4/4)



▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

• And (a bit) in Dutch residential



- We examine co-movements in residential and commercial real estate returns and market liquidity across the world
- Market liquidity co-moves stronger than real returns
- Residential markets are stronger integrated than commercial markets
- Buyers in RES are more similar (and usually simultaneously buyer and seller) and thus reservation prices are closer to each other
- Funding liquidity drives market liquidity in both commercial and residential markets

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

| once<br>00 | pt Model Results Conclusions<br>0000000 00000000 0                                                                                               | References |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|            |                                                                                                                                                  |            |
|            | Francke, Marc Geltner, D., A. Van de Minne, and B. White (2017). Revisi<br>in granular repeat sales indices. <i>SSRN Working paper 3016563</i> . | ons        |
|            | Gatzlaff, D. H. and D. R. Haurin (1997). Sample selection bias and                                                                               |            |
|            | repeat-sales index estimates. The Journal of Real Estate Finance a                                                                               | nd         |
|            | Economics 14(1), 33–50.                                                                                                                          |            |
|            | Heckman, J. J. (1979). Sample selection bias as a specification error.                                                                           |            |
|            | Econometrica: Journal of the Econometric Society, 153–161.                                                                                       |            |
|            | Hoffman, M. D. and A. Gelman (2014). The No-U-turn sampler: Adaptive                                                                             | -          |
|            | setting path lengths in Hamiltonian Monte Carlo. Journal of Machi                                                                                | ine        |
|            | Learning Research 15(1), 1593–1623.                                                                                                              |            |
|            | Karolyi, G. A., KH. Lee, and M. A. Van Dijk (2012). Understanding                                                                                |            |
|            | commonality in liquidity around the world. <i>Journal of Financial</i>                                                                           |            |
|            | Economics $105(1)$ , $82-112$ .                                                                                                                  |            |
|            | Morck, R., B. Yeung, and W. Yu (2000). The information content of stoch                                                                          | K          |
|            | markets: why do emerging markets have synchronous stock price                                                                                    |            |

movements? Journal of Financial Economics 58(1-2), 215–260.

Roll, R. (1988). r<sup>2</sup>. Journal of Finance 43(2), 541–566.

Van Dijk, D., D. Geltner, and A. van de Minne (2018). Revisiting supply and demand indexes in real estate. *DNB Working paper 583*.

#### Reservation price model (short)

- Adapt Heckman selection model for repeat sales developed by (Gatzlaff and Haurin, 1997)
- Estimate probability of sale:

$$egin{aligned} S^*_{i,t} &= \gamma_t + X_i \omega + \eta_{i,t}, & \eta_{i,t} \sim \mathcal{N}(0,1). \ &= \mathsf{Pr}(S_{i,t} = 1 | X_i) = \Phi(\gamma_t + X_i \omega) \end{aligned}$$

• Estimate the repeat sales model:

$$\begin{aligned} P_{i,t} - P_{i,s} &= \beta_t - \beta_s + \sigma_{\varepsilon,\eta} (\lambda_2 - \lambda_1) + \upsilon_i, \qquad \upsilon_i \sim \mathcal{N}(0, \sigma_{\upsilon}^2) \\ \Delta \beta_t &= \rho \Delta \beta_{t-1} + \xi_t, \qquad \xi_t \sim \mathcal{N}(0, \frac{\sigma_{\xi}^2}{1 - \rho^2}). \end{aligned}$$

•  $\lambda$  are the "inverse Mills Ratios" from the probit Back to main.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��

# Reservation price model (short)

• Combine probit and RS results to obtain investor demand/supply indices (FGGH):

$$\hat{\beta}_t^b = \hat{\beta}_t + \frac{1}{2}\hat{\sigma}\hat{\gamma}_t$$
$$\hat{\beta}_t^s = \hat{\beta}_t - \frac{1}{2}\hat{\sigma}\hat{\gamma}_t$$

- Identification of ô makes uses of the fact that residuals of repeat sales model are equivalent to residuals of hedonic model with pair fixed effects
- Identification of λ requires no correlation error terms of the first selection (sale) equation and the second sale (selection) and correlation between the first sale and first selection=correlation of the second sale and second selection
- Complete model here.

Back to main.

## Reservation price model (long)

Starting point are the reservation prices:

$$\begin{aligned} RP_{i,t}^{b} &= \beta_{t}^{b} + X_{i}\alpha^{b} + \varepsilon_{i,t}^{b}, \\ RP_{i,t}^{s} &= \beta_{t}^{s} + X_{i}\alpha^{s} + \varepsilon_{i,t}^{s}. \end{aligned}$$

Normal hedonic model estimates the following:

$$\begin{split} E(P_{i,t}) &= \frac{1}{2} (\beta_t^b + \beta_t^s) + \frac{1}{2} X_i (\alpha^b + \alpha^s) + \frac{1}{2} E((\varepsilon_{i,t}^b + \varepsilon_{i,t}^s) | RP_{i,t}^b \ge RP_{i,t}^s), \\ E(P_{i,t}) &= \beta_t + X_i \alpha + E(\varepsilon_{i,t} | RP_{i,t}^b \ge RP_{i,t}^s). \end{split}$$

We observe  $S_{i,t} = 1$  if a transaction is consummated:

$$S_{i,t}^* = RP_{i,t}^b - RP_{i,t}^s = (\beta_t^b - \beta_t^s) + X_i(\alpha^b - \alpha^s) + (\varepsilon_{i,t}^b - \varepsilon_{i,t}^s).$$

Back to main.

Othe

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Estimate the following probit:

$$egin{aligned} S^*_{i,t} &= \gamma_t + X_i \omega + \eta_{i,t}, & \eta_{i,t} \sim \mathcal{N}(0,1). \ &= \mathsf{Pr}(S_{i,t} = 1 | X_i) = \Phi(\gamma_t + X_i \omega), \end{aligned}$$

The coefficients are estimated up to scale factor  $\sigma$ :

$$\hat{\gamma} = \gamma/\sigma = (\beta_t^b - \beta_t^s)/\sigma,$$
$$\hat{\omega} = \omega/\sigma = (\alpha^b - \alpha^s)/\sigma.$$

Calculate IMRs and plug these in the two sales equations:

$$E(P_{i,s}|S_{i,s}=1) = \beta_s + X_i \alpha + E(\varepsilon_{i,s}|S_{i,s}=1),$$
  
=  $\beta_s + X_i \alpha + \sigma_{1,3} \lambda_1 + \sigma_{2,3} \lambda_2,$ 

$$E(P_{i,t}|S_{i,t}=1) = \beta_t + X_i \alpha + E(\varepsilon_{i,t}|S_{i,t}=1),$$
  
=  $\beta_t + X_i \alpha + \sigma_{1,4} \lambda_1 + \sigma_{2,4} \lambda_2.$ 



This results in the following repeat sales equation:

$$P_{i}^{t} - P_{i}^{s} = \beta_{t} - \beta_{s} + (\sigma_{1,4} - \sigma_{1,3})\lambda_{s} + (\sigma_{2,4} - \sigma_{2,3})\lambda_{t} + v_{i}.$$

We estimate the following restricted version:

$$P_{i,t} - P_{i,s} = \beta_t - \beta_s + \sigma_{\varepsilon,\eta}(\lambda_2 - \lambda_1) + \upsilon_i, \qquad \qquad \upsilon_i \sim N(0, \sigma_v^2).$$

The conditional expected variance of the pricing errors  $(\varepsilon_{i,t}^2)$  is:

$$E(\varepsilon_{i,t}^{2}|S_{i,t}=1) = \sigma_{\varepsilon}^{2} - \sigma_{\varepsilon,\eta}^{2}(\gamma_{t} + X_{i}\omega)\lambda_{i,t},$$
  
where  $\sigma_{\varepsilon}^{2} = \operatorname{Var}((\varepsilon_{i,t}^{b} + \varepsilon_{i,t}^{s})/2) = (\sigma_{b}^{2} + \sigma_{s}^{2})/4 = \sigma^{2}/4.$ 

Rewriting yields:

$$\hat{\sigma}_{\varepsilon}^{2} = (1/N) \sum_{i=1}^{N} \left[ \hat{\varepsilon}_{i,t}^{2} + \hat{\sigma}_{\varepsilon,\eta}^{2} (\hat{\gamma}_{t} + X_{i}\hat{\omega}) \hat{\lambda}_{i,t} \right], \\ \hat{\sigma} = 2\hat{\sigma}_{\varepsilon}.$$



Reservation price model

From the probit we have  $\hat{\gamma} = (\hat{\beta}_t^b - \hat{\beta}_t^s)/\hat{\sigma}$ , we also have  $\hat{\beta}_t = \frac{1}{2}(\hat{\beta}_t^b + \hat{\beta}_t^s) \rightarrow \hat{\beta}_t^s = 2\hat{\beta}_t - \hat{\beta}_t^b$ :

$$\hat{\gamma} = (\hat{\beta}_t^b - 2\hat{\beta}_t - \hat{\beta}_t^b)\hat{\sigma},$$
$$\hat{\beta}_t^b = \hat{\beta}_t + \frac{1}{2}\hat{\sigma}\hat{\gamma}_t.$$

Similarly:

$$\hat{\beta}_t^s = \hat{\beta}_t - \frac{1}{2}\hat{\sigma}\hat{\gamma}_t.$$



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

#### Estimation

- Two-step approach (Heckman, 1979)
- Probit is estimation by Maximum Likelihood
- Repeat sales model is estimated in Bayesian framework (Francke, Van de Minne, and White, 2017)
- MCMC methods, NUTS in RStan (Hoffman and Gelman, 2014)
- Chains=4, Iterations per chain=6000, Warmup=3000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��



Difference Dem-Sup (Measure 1, left axis) - Corrected TOM (Measure 2, right axis)

•••••Uncorrected TOM (Right axis)

— — House prices (Right axis)

## Liquidity in Amsterdam residential real estate