The Impact of the Time-to-Close on Residential Transaction Prices

Yumei Wang, Marc Francke, and Martijn Dröes y.wang4@uva.nl m.k.francke@uva.nl m.i.droes@uva.nl

University of Amsterdam Amsterdam Business School Finance Group, Faculty of Economics and Business

Weimer School, January 19, 2019

Wang & Francke & Dröes (UvA)

Impact of time-to-close on prices

2019 1/32

Introduction

Introduction - C and T

- t₀: put house on market, setting of initial asking price
- t₂: date of legal transfer
- t1: date of signing sale contract, agreement on
 - P: transaction price
 - T: time-on-market: $t_1 t_0$
 - C: time-to-close: t₂ t₁
- Research question:

What is the relation between T and C and P?

Introduction

Sale contract

- Time-to-close, why?
 - Buyer needs time to arrange finance (mortgage)
 - Physical inspection of property
- Cancellation
 - Within 3 working days (without giving any reason)
 - Otherwise, only in case of agreed cancellation clauses
 - ★ Finance
 - Housing permit
 - * National Mortgage Guarantee (NHG)
 - Physical condition
 - ★ Approval for changing the property
 - ★ (Selling your own house)
 - Penalty: 10% of transaction price

Introduction

Impact of C on P

- Buyer
 - Patient:

Buyer must sell his current home first (includes first-time-buyer)

Impatient:

Buyer has sold his current home and wants to move quickly

- Seller
 - Patient: Seller still needs to buy a new home
 - Impatient: Seller already bought a new home
- Differences in bargaining power, impact on price

Buyer∖Seller	Patient	Impatient
Patient		-
Impatient	+	

- Both buyer and seller want to avoid costs of owning 2 houses
- When prices are increasing, seller wants to be compensated for long *C*

Wang & Francke & Dröes (UvA)

Time-to-close

First sell, then buy

- Blue: buyer owns 2 houses; red: seller owns 2 houses

Wang & Francke & Dröes (UvA)

Impact of time-to-close on prices

2019 5/32

• • • • • • • • • •

- Merge two databases:
 - Dutch Brokerage Organization NVM
 - ★ date of signing sales contract
 - ★ (initial) asking price
 - ★ property characteristics
 - Land registry
 - * date of legal transfer
 - * price
 - first-time-buyer (FTB)
- Sample period: 2006 2016
- 4 regions in the Netherlands:
 - Amsterdam: hot market
 - Hart van Brabant (Tilburg)
 - Zwolle
 - Achterhoek
- Matched sample: about 115,000 transactions

Regions within the Netherlands

Wang & Francke & Dröes (UvA)

2019 7/32

Distribution of T (number of days)

Four regions, 2006-2016

- Large spread, most sold in one year.

Wang & Francke & Dröes (UvA)

2019 8/32

Distribution of C (number of days)

Four regions, 2006-2016

- Bit more evenly spread, small peak at zero, average at about 2 months.

Wang & Francke & Dröes (UvA)

Impact of time-to-close on prices

2019 9/32

Distribution of C

С	Frequency
0 day	0.5%
1 week	2%
1 month	11%
2 months	49%
6 months	96%

It takes about 2 months to get a mortgage...

Wang & Francke & Dröes (UvA)

Impact of time-to-close on prices

2019 10/32

(a)

Average (P, T, C) over years

- C does not vary much over the cycle, unlike P and T.

Wang & Francke & Dröes (UvA)

2019 11/32

Regional variation in (P, T, C)

	N	Min	Median	Max	Mean	Std.Dev.
Ρ						
Achterhoek	14,205	42,000	210,000	1,525,000	241,172	117,335
Amsterdam	61,764	60,000	231,000	4,900,000	296,814	239,987
Hart van Brabant	28,455	45,000	212,500	4,000,000	244,845	124,874
Zwolle	10,417	58,000	198,000	1,312,500	225,182	105,835
Т						
Achterhoek	14,205	1	153	1,435	262	290
Amsterdam	61,764	1	49	1,433	118	176
Hart van Brabant	28,455	1	117	1,434	210	251
Zwolle	10,417	1	92	1,435	181	230
С						
Achterhoek	14,205	0	73	365	83	51
Amsterdam	61,764	0	56	365	64	39
Hart van Brabant	28,455	0	73	366	87	54
Zwolle	10,417	0	71	365	82	49

- Amsterdam is atypical; highest P, and lowest T.

- Low C is probably due to larger share of private investors (buy-to-let). No cancellation clauses

< 日 > < 同 > < 回 > < 回 > < □ > <

Relation between asking A and transaction price P

	4 regions	Achterhoek	Amsterdam	Hart van Brabant	Zwolle				
	A > P								
Obs.	92,662	13,192	42,944	26,946	9,580				
Perc.	80.7%	92.9%	69.5%	94.7%	92.0%				
			A = P						
Obs.	7,634	631	5,471	978	554				
Perc.	6.6%	4.4%	8.9%	3.4%	5.3%				
A < P									
Obs.	14,545	382	13,349	531	283				
Perc.	12.7%	2.7%	21.6%	1.9%	2.7%				

- Majority sells at price below asking price.
- Incorporate relationship between P and A in empirical framework.

4 A N

Asking price to transaction price over time: A/P - 1

Wang & Francke & Dröes (UvA)

Impact of time-to-close on prices

2019 14/32

First-time-buyers (FTB)

	Min	Median	Max	Mean	Std.Dev.			
All observations (114,841)								
Р	42,000	220,000	4,900,000	270,557	195,923			
Т	1	73	1,435	165	224			
С	0	62	366	73	47			
	Panel A: FTB (51,951)							
Р	46,500	192,500	4,700,000	219,462	118,323			
Т	1	67	1,435	150	206			
С	0	59	365	67	38			
Panel B: non-FTB (62,890)								
Р	42,000	250,000	4,900,000	312,765	233,649			
Т	1	80	1,435	177	237			
С	0	65	366	78	53			

- FTB should be more patient, but unconditionally have lower *C* (as well as *T*).

Wang & Francke & Dröes (UvA)

2019 15/32

Control variables

Statistics	Mean	Std.Dev.	Zeros	Year	Percentage
Floor size m ²	103	49	0.06%	2006	10.4%
Lot size m ²	171	556	51.9%	2007	10.8%
No. of rooms	4	2	0.1%	2008	10.0%
Dummy variables				2009	7.8%
Construction Period				2010	7.6%
House type				2011	7.9%
Maintenance				2012	7.5%
Monument				2013	6.9%
Garden				2014	9.5%
Parking				2015	11.1%
Attic				2016	10.4%

Relation between (P, T, C)

- (P, T, C) are simultaneously determined: endogeneity
- (*P*, *T*, *C*) are correlated through a latent component, the motivation of sellers and buyers:
 - Literature on relation between P and T
 - Impact of C has not been studied (?)
- Boom period: high *P* and low *T* (Han and Strange, 2014)
- Asking price (*A*) acts as signal concerning motivation of seller (Ferreira and Sirmans, 1989; Yavas and Yang, 1995)
- A exogenous for buyer, plays a role in decision to make offer
- T depends on atypical character of house (Haurin et al., 2010)
- *T* depends on loan-to-value (Genesove and Mayer, 1997)

Methodology

Estimation

- 2SLS approaches for either P or T: neglects that the determination process is simultaneous
- Knight (2002)
 - use \hat{T} in equation for *P*, and
 - use P̂ in equation for T
 - no instruments are being used
 - equations estimated separately ignoring correlation in error terms
- We follow Dubé and Legros (2016) and extend it to C:
 - 2SLS
 - spatial and temporal lagged instruments
 - ★ A: initial asking prices
 - ★ *n*: number of transactions
 - ★ T: time-on-the-market
 - ★ A/P: ratio of asking price to transaction price
 - (SUR framework)

Methodology

Estimation

- First stage

$$\ln P_{i,t} = X_{i,t}^{P} \beta^{P} + Z_{i,t}^{P} \delta^{P} + \varepsilon_{i,t}^{P}$$
(1)

$$\ln T_{i,t} = X_{i,t}^T \beta^T + Z_{i,t}^T \delta^T + \varepsilon_{i,t}^T$$
(2)

$$\ln C_{i,t} = X_{i,t}^C \beta^C + Z_{i,t}^C \delta^C + \varepsilon_{i,t}^C$$
(3)

where

- X: property characteristics, including time and location fixed effects
- Z: instrumental variables
- Second stage

$$\ln P_{i,t} = X_{i,t}^{P} \beta^{P} + \qquad + \hat{T}_{i,t} \gamma^{P} + \hat{C}_{i,t} \lambda^{P} + \epsilon_{i,t}^{P}$$
(4)

$$\ln T_{i,t} = X_{i,t}^T \beta^T + \hat{P}_{i,t} \omega^T \qquad + \hat{C}_{i,t} \lambda^T + \epsilon_{i,t}^T$$
(5)

$$\ln C_{i,t} = X_{i,t}^C \beta^C + \hat{P}_{i,t} \omega^C + \hat{T}_{i,t} \gamma^C \qquad + \epsilon_{i,t}^C$$
(6)

< ロ > < 同 > < 回 > < 回 >

Instruments

- Spatial and temporal lagged (ST) variables:
 - ▶ t 3, · · · , t 1
 - within a radius of 500 meters
- Instruments
 - In P: ST In A, ST In(A/P), ST In T
 - In T: ST In A, ST $\ln(A/P)$, ST In T
 - In C: ST In C
- Sensitivity analysis in spatial and temporal lag and instruments

A D N A B N A B N A B N

Overview results

- OLS
- First stage
- Second stage
- Regional split
- FTB versus non-FTB
- Recession (2009–2013) and expansion (2006–2008, 2014–2016)

Results OLS

OLS results

		Dependent Variable:	
	In(P)	ln(T)	ln(C)
	(1)	(2)	(3)
In(P)		-0.4235***	0.3938***
		(0.021)	(0.013)
$\ln(T)$	-0.0091***		-0.0612***
	(0.000)		(0.002)
$\ln(C)$	0.0217***	-0.1574***	
	(0.001)	(0.005)	
Control vars	Yes	Yes	Yes
Zipcode FE	Yes	Yes	Yes
Adj R ²	0.878	0.215	0.114
RMSE	0.164	1.121	0.699
F Statistic (df = 273; 108712)	2,866.395***	110.343***	52.416***

p<0.1; *p<0.05; ***p<0.01.

- Bi-directional relationship between T and P.

- Higher C: more P and less T.

Results OLS

Average OLS residual by C in months

Wang & Francke & Dröes (UvA)

Impact of time-to-close on prices

2019 23/32

First stage Instrumental Variables

		Dependent Variable:	
	$\ln(P)$	ln(T)	ln(C)
	(1)	(2)	(3)
ST In(A)	0.2136***	-0.0723***	
	(0.0024)	(0.0170)	
$ST \ln(A/P)$	-0.2257***	0.1105***	
	(0.0048)	(0.0341)	
$ST \ln(T)$	-0.0215***	0.1583***	
	(0.0009)	(0.0062)	
$ST\ln(C)$	-0.0150***		0.0725***
	(0.0019)		(0.0080)
Control variables	Yes	Yes	Yes
Time FE	Yes	Yes	Yes
Zipcode FE	Yes	Yes	Yes
Adj R ²	0.8849	0.2083	0.0973
RMSE	0.1592	1.1260	0.7055
F Statistic	3,060.00***	105.70***	44.18***

Note: *p<0.1; **p<0.05; ***p<0.01.

- Spatio-temporal instruments seem to work well.

Second stage Instrumental Variables

	Ĺ	Dependent Variable:	
	ln(P)	ln(T)	ln(C)
	(1)	(2)	(3)
In P		-0.8300***	0.0510
		(0.0795)	(0.0526)
ln \hat{T}	-0.1899***		-0.0131
	(0.0055)		(0.0259)
In Ĉ	0.2801***	0.2862	
	(0.0258)	(0.1818)	
Control variables	Yes	Yes	Yes
Time fixed effects	Yes	Yes	Yes
Zip code fixed effects	Yes	Yes	Yes
Adjusted R ²	0.8775	0.2041	0.0966
Residual Std. Error (df = 108712)	0.1643	1.1290	0.7058
F Statistic (df = 273; 108712)	2,862.00***	103.40***	43.69***

- Dubé and Legros (2016): $\ln \hat{T} = -0.0777$ and $\ln \hat{P} = -0.8047$

- A 1 SD increase in C increases P by about 6.5 percent.

Transaction price: regional split

	Achterhoek	Amsterdam	Hart van Brabant	Zwolle	Total
		Transa	action Prices		
1 st stage					
$ST\ln(\tilde{A})$	0.0486*** (0.0058)	0.2020*** (0.0031)	0.1050*** (0.0045)	0.0369*** (0.0076)	0.2136*** (0.0024)
$ST\ln(A/P)$	、 ,	_0.2080*** (0.0055)	_0.1080*** (0.0285)	_0.0353*** (0.0099)	-0.2257 [*] ** (0.0048)
$ST\ln(T)$	-0.0091*** (0.0018)	-0.0251*** (0.0013)	-0.0048*** (0.0017)	-0.0084*** (0.0024)	-0.0215*** (0.0009)
2 nd stage					
$\ln(\hat{T})$	-0.2580*** (0.0362)	-0.0675*** (0.0050)	-0.0293 (0.0234)	-0.0954*** (0.0288)	-0.1899*** (0.0055)
$\ln(\hat{C})$	0.0878 (0.1190)	0.3620*** (0.0379)	0.4630*** (0.0830)	0.0390 (0.0641)	0.2801*** (0.0258)
Adjusted R ²	0.8450	0.9200 [′]	0.8660 [´]	0.8760 [′]	0.8775

- Quite some regional variation: Hot versus cold markets? Supply constraints?

Wang & Francke & Dröes (UvA)

2019 26/32

FTB versus non-FTB: First stage

	Dependent Variable:						
	ln(P)	In	I(T)	In	ln(C)	
	FTB	non-FTB	FTB	non-FTB	FTB	non-FTB	
	(1)	(2)	(3)	(4)	(5)	(6)	
ST In(A)	0.2050***	0.2110***	-0.0643**	-0.0822***			
	(0.0034)	(0.0033)	(0.0268)	(0.0221)			
ST $ln(A/P)$	-0.2200***	-0.2210***	0.0954*	0.1270***			
	(0.0066)	(0.0068)	(0.0519)	(0.0454)			
$ST \ln(T)$	-0.0216	-0.0208***	0.1800***	0.1400***			
	(0.0012)	(0.0012)	(0.0093)	(0.0083)			
ST In(C)	· · ·	· · · ·	,	, ,	0.0673***	0.0684***	
					(0.0113)	(0.0112)	
Control vars	Yes	Yes	Yes	Yes	Yes	Yes	
Time FE	Yes	Yes	Yes	Yes	Yes	Yes	
Zipcode FE	Yes	Yes	Yes	Yes	Yes	Yes	
Obs	50,140	58,846	50,140	58,846	50,140	58,846	
Adj R ²	0.8570	0.8880	0.1930	0.2220	0.0752	0.1180	
RMSE	0.1390	0.1700	1.1000	1.1400	0.6490	0.7460	

Note: *p<0.1; **p<0.05; ***p<0.01.

- FTB and non-FTB not so much different response to instruments.

FTB versus non-FTB: Second stage

	Dependent Variable:						
	ln((P)	In	(T)	ln(ln(C)	
	FTB	non-FTB	FTB	non-FTB	FTB	non-FTB	
	(1)	(2)	(3)	(4)	(5)	(6)	
$\ln(\hat{P})$			-1.0800*** (0.1300)	-0.7420*** (0.1050)	-0.0803 (0.0803)	0.1110 (0.0737)	
$\ln(\hat{T})$	-0.1510*** (0.0066)	- <mark>0.2330</mark> *** (0.0088)			-0.0473 (0.0322)	0.0200 (0.0411)	
$\ln(\hat{C})$	0.3390*** (0.0374)	0.2440*** (0.0386)	1.2100*** (0.2950)	-0.2640 (0.2590)			
Control var	Yes	Yes	Yes	Yes	Yes	Yes	
Time FE	Yes	Yes	Yes	Yes	Yes	Yes	
Zipcode FE	Yes	Yes	Yes	Yes	Yes	Yes	
Obs	50,140	58,846	50,140	58,846	50,140	58,846	
Adj R ²	0.8488	0.8831	0.1975	0.2309	0.0879	0.1370	
RMSE	0.1432	0.1739	1.0970	1.1370	0.6444	0.7380	

Note: *p<0.1; **p<0.05; ***p<0.01.

- Surprisingly higher *C* has higher effect on *P* for FTB. Wealth considerations?

Wang & Francke & Dröes (UvA)

2019 28/32

Recession and expansion: First stage

	Dependent Variable:							
	In(P)		ln(T)		In(C)			
	Recession	Expansion	Recession	Expansion	Recession	Expansion		
	(1)	(2)	(3)	(4)	(5)	(6)		
ST In(A)	0.1120***	0.2570***		-0.0650***				
	(0.0038)	(0.0031)		(0.0202)				
ST $ln(A/P)$	-0.1120***	-0.3270***		0.1980***				
	(0.0058)	(0.0111)		(0.0728)				
$ST \ln(T)$	-0.0053***	-0.0225***	0.0723***	0.1580***				
()	(0.0013)	(0.0012)	(0.0106)	(0.0081)				
$ST \ln(C)$	· · · ·	, ,	· · · ·	· · · ·	0.0323**	0.0680***		
					(0.0130)	(0.0104)		
Control vars	Yes	Yes	Yes	Yes	Yes	Yes		
Time FE	Yes	Yes	Yes	Yes	Yes	Yes		
Zipcode FE	Yes	Yes	Yes	Yes	Yes	Yes		
Obs	41,141	67,845	41,141	67,845	41,141	67,845		
Adj R ²	0.8900	0.8850	0.1040	0.1990	0.0694	0.1120		
RMSE	0.1500	0.1610	1.2100	1.0600	0.7110	0.7010		

Note: $^{*}p<0.1$; $^{**}p<0.05$; $^{***}p<0.01$.

• • • • • • • • • • • • •

Recession and expansion: Second stage

	Dependent Variable:							
	In(P)		ln(T)		In(C)			
	Recession	Expansion	Recession	Expansion	Recession	Expansion		
	(1)	(2)	(3)	(4)	(5)	(6)		
$\ln(\hat{P})$			-0.2750 (0.2830)	-0.5030*** (0.0802)	0.0665 (0.1620)	0.0689 (0.0540)		
$\ln(\hat{T})$	- <mark>0.0443</mark> ** (0.0182)	- <mark>0.1990</mark> *** (0.0077)	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	0.0500 (0.0856)	-0.1100*** (0.0337)		
$\ln(\hat{C})$	0.3610*** (0.0856)	0.4790*** (0.0371)	0.7760 (0.7020)	-0.4830** (0.2420)				
Control vars	Yes	Yes	Yes	Yes	Yes	Yes		
Time FE	Yes	Yes	Yes	Yes	Yes	Yes		
Zipcode FE	Yes	Yes	Yes	Yes	Yes	Yes		
Obs	41,141	67,845	41,141	67,845	41,141	67,845		
Adj R ²	0.8870	0.8750	0.1030	0.1950	0.0693	0.1110		
RMSE	0.1510	0.1690	1.2200	1.0600	0.7110	0.7010		

Note: *p<0.1; **p<0.05; ***p<0.01.

- During an expansion waiting longer to 'close the deal' (*C*) is more costly.

Wang & Francke & Dröes (UvA)

Conclusion

- C has positive effect on P : important to include in HPM
- *C* has larger effect on *P* for the FTB than for the non-FTB (counter-intuitive from patient / impatient)
- C has larger effect on price during expansions than recessions

Some to do's:

. . .

- continuous measure of impatience: exploit information of buyer and seller
- cost versus benefit of waiting (channels)

References I

Dubé, J. and D. Legros (2016). "A Spatiotemporal Solution for the Simultaneous Sale Price and Timeon-the-Market Problem". In: *Real Estate Economics* 44.4, pp. 846–877.

Ferreira, E. J. and G. S. Sirmans (1989). "Selling price, financing premiums, and days on the market". In: The Journal of Real Estate Finance and Economics 2.3, pp. 209–222.

Genesove, D. and C. Mayer (1997). "Equity and Time to Sale in the Real Estate Market". In: American Economic Review 87, pp. 255–269.

Han, L. and W. C. Strange (2014). "Bidding wars for houses". In: *Real Estate Economics* 42.1, pp. 1–32. Haurin, D.R., J.L. Haurin, T. Nadauld, and A. Sanders (2010). "List Prices, Sale Prices and Marketing Time: An Application to US Housing Markets". In: *Real Estate Economics* 38.4, pp. 659–685.

Knight, J. R. (2002). "Listing price, time on market, and ultimate selling price: Causes and effects of listing price changes". In: *Real Estate Economics* 30.2, pp. 213–237.

Yavas, A. and S. Yang (1995). "The strategic role of listing price in marketing real estate: Theory and evidence". In: *Real Estate Economics* 23.3, pp. 347–368.

イロト 不得 トイヨト イヨト