Introduction	Motivation	Model	Estimation	Dynamics	Conclusions

Monetary Policy and Commercial Real Estate Price Dynamics

David Leather and Jacob S. Sagi

University of North Carolina at Chapel Hill

David Leather and Jacob S. Sagi Monetary Policy and Commercial Real Estate Price Dynamics

 Introduction
 Motivation
 Model
 Estimation
 Dynamics
 Conclusions

 •0000
 00
 00
 00
 00
 00
 00

 The \$10T question
 0000
 00
 00
 00
 00

Commercial real estate (CRE) is RE held for rental income & capital gains

- Large investment asset class
- Not as well understood as other major asset classes (lack of data)
- E.g., A key pricing variable (cap rate) often viewed statically via the Gordon-Williams growth model:
 - cap rate = $r g \approx T10 + rp + lp g$
 - doesn't hold up well to regression analysis
- Cap rates have been near historic lows. That has lots of folks worried.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
0●000	00	000000	00	0000	O
The \$107	F question				

What will happen to cap rates when interest rates "go back to normal?"

- **→** → **→**

- ∢ ⊒ →

э

Correlations:

Pre-19990	13			
	r	r10	pi	g
са	0.444	-0.034	-0.017	-0.657
ci	0.604	-0.006	-0.044	-0.696
со	0.496	0.067	0.118	-0.608
cr	0.681	-0.575	-0.825	-0.339
cm	-0.06	0.706	0.772	-0.274
r		0.02	-0.442	-0.396
r10			0.669	0.089
pi				-0.098
Post-1999Q3				
	r	r10	pi	g
са	0.404	0.617**	-0.127	-0.164**
ci	0.285	0.603**	-0.137	-0.358*
со	0.259	0.57*	-0.057	-0.362
cr	0.299*	0.586***	-0.12***	-0.302
cm	-0.625**	-0.769***	-0.158***	-0.261
r		0.801***	0.576***	0.643***
-				
r10			0.299*	0.294

"stars" reject the null of unchanged correlations * p<0.05, **p<0.01, ***p<0.001

David Leather and Jacob S. Sagi

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
0●000	00	000000	00	0000	O
The \$10T	question				

What will happen to cap rates when interest rates "go back to normal?"

A Mickey-Mouse monetary policy (MP) theory....

David Leather and Jacob S. Sagi

Monetary Policy and Commercial Real Estate Price Dynamics

Is NOI related to macro fundamentals?

NCREIF quarterly NOI

1992-2016							
	Apt	Ind	Off	Ret			
pi	0.11	-0.49**	-0.77***	0.04			
g	0.59***	0.67***	0.66***	0.35***			
Adj R2	0.33	0.32	0.25	0.19			

David Leather and Jacob S. Sagi Monetary Policy and Commercial Real Estate Price Dynamics

・ロト ・回ト ・モト ・モト

э

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00●00	00	000000	00	0000	O
The prof	lem with N	Aickey Mo	lise		

Though one can test and find a structural break....

- A one data-point hind-insight
- If MP policy mattered, future policy changes would be baked into current prices

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions		
00000	00	000000	00	0000	O		
The problem with Mickey Mouse							

Though one can test and find a structural break....

- A one data-point hind-insight
- If MP policy mattered, future policy changes would be baked into current prices
 - Need a dynamic REE

Dynamic income has to be consistently capitalized to arrive at dynamic prices

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
000●0	00	000000	00	0000	O
This paper					

御 と く ヨ と く ヨ と

э

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
000●0	00	000000	00	0000	0
This paper					

• Relationship between macro fundamentals can experience regime changes (Sims, 2001; Bianchi, 2013; Bikbov & Chernov, 2013)

同 ト イ ヨ ト イ ヨ ト

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	000000	00	0000	O
This pape	r				

- Relationship between macro fundamentals can experience regime changes (Sims, 2001; Bianchi, 2013; Bikbov & Chernov, 2013)
- Asset fundamentals depend on macro fundamentals
 - Allow for structural breaks here too

直 ト イヨ ト イヨ ト

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	000000	00	0000	O
This pape	r				

- Relationship between macro fundamentals can experience regime changes (Sims, 2001; Bianchi, 2013; Bikbov & Chernov, 2013)
- Asset fundamentals depend on macro fundamentals
 - Allow for structural breaks here too
- Prices capitalize asset fundamentals
 - Discount rate depends on macro fundamentals

直 ト イヨ ト イヨ ト

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	000000	00	0000	O
This pape	r				

- Relationship between macro fundamentals can experience regime changes (Sims, 2001; Bianchi, 2013; Bikbov & Chernov, 2013)
- Asset fundamentals depend on macro fundamentals
 - Allow for structural breaks here too
- Prices capitalize asset fundamentals
 - Discount rate depends on macro fundamentals
- In a joint estimation, we find evidence that
 - CRE prices exhibit profound dependence on MP regime
 - Key drivers appears to be income growth sensitivity to infl & output gap

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	000000	00	0000	O
This paper	•				

Our structural model can be used to

- Analyze expected price dynamics given any initial conditions
- Assess impact of policy experiments
- Quantify risk and its sources
 - E.g., mortgage pricing and default risk

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	●0	000000	00	0000	O
Who care	es?				

CRE size in context

- \bullet Household residential stock: \sim \$27T
- Business RE: \sim \$25T
- Potential institutional grade CRE: \sim \$9T
- \bullet CRE owned by investment institutions: \sim \$3T
- Apartment and non-resi CRE mortgages: \$4T
- $\bullet~$ CRE loans vs. total loans for banks with < \$10B in assets: 35%
- National crisis attributed to CRE: S&L Crisis

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	⊙●	000000	00	0000	O
Who car	es?				

- 4 回 > - 4 回 > - 4 回 >

æ

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	⊙●	000000	00	0000	O
Who car	es?				

• Regulators (e.g., the Fed)

伺 ト く ヨ ト く ヨ ト

э

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	⊙●	000000	00	0000	O
Who car	es?				

- Regulators (e.g., the Fed)
- Banks (especially small & regional banks)

- **→** → **→**

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	⊙●	000000	00	0000	O
Who car	es?				

- Regulators (e.g., the Fed)
- Banks (especially small & regional banks)
- Large investors (especially in the "Alt" space)

/₽ ► < ∃ ►

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	○●	000000	00	0000	O
Who care	es?				

- Regulators (e.g., the Fed)
- Banks (especially small & regional banks)
- Large investors (especially in the "Alt" space)
- Consumers
 - Residential rents and rental inventory are linked to owned owner-occupied stock and valuation

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	○●	000000	00	0000	O
Who care	es?				

- Regulators (e.g., the Fed)
- Banks (especially small & regional banks)
- Large investors (especially in the "Alt" space)
- Consumers
 - Residential rents and rental inventory are linked to owned owner-occupied stock and valuation
- Firms
 - RE makes up a significant part of tangible collateral in their capital base (Tuzel, 2010; Cvijanovic, 2014)

伺 ト イ ヨ ト イ ヨ ト

Model: N	Macroecond	omic Dyna	mics		
Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	●00000	00	0000	0

Bikbov-Chernov (2013): Regime switching REE-consistent model of macro fundamentals

 $g_t =$ output gap; $\pi_t =$ inflation rate; $r_t =$ 3m rf-rate

 $\varepsilon_t^i \sim^{iid} N(0,1)$, $s_t^m \& s_t^d$ MP regimes (each 2-state Markov, indep).

Introduction Motivation Model Estimation Dynamics Conclusions 00000 00 00 00 00 00 000 0

Model: Macroeconomic Dynamics

Bikbov-Chernov (2013): Regime switching REE-consistent model of macro fundamentals

 $g_t =$ output gap; $\pi_t =$ inflation rate; $r_t =$ 3m rf-rate

 $\varepsilon_t^i \sim^{iid} N(0,1)$, $s_t^m \& s_t^d$ MP regimes (each 2-state Markov, indep).

(IS)
$$g_t = m_g + (1 - \mu_g)g_{t-1} + \mu_g \mathbb{E}_t g_{t+1} - \phi(r_t - \mathbb{E}_t \pi_{t+1}) + \sigma_g \epsilon_t^g$$

(PC) $\pi_t = m_\pi + (1 - \mu_\pi)\pi_{t-1} + \mu_\pi \mathbb{E}_t \pi_{t+1} + \delta g_t + \sigma_\pi \epsilon_t^\pi$
(MP) $r_t = m_r(s_t^m) + \rho(s_t^m)r_{t-1} + \hat{\alpha}(s_t^m)\mathbb{E}_t \pi_{t+1} + \hat{\beta}(s_t^m)g_t + \sigma_r(s_t^d)\epsilon_t^r$

(4月) (4日) (4日) 日

Introduction Motivation Model Estimation Dynamics Conclusions 00000 00 00 00 00 00 000 0

Model: Macroeconomic Dynamics

Bikbov-Chernov (2013): Regime switching REE-consistent model of macro fundamentals

 $g_t =$ output gap; $\pi_t =$ inflation rate; $r_t =$ 3m rf-rate

 $\varepsilon_t^i \sim^{iid} N(0,1)$, $s_t^m \& s_t^d$ MP regimes (each 2-state Markov, indep).

(IS)
$$g_t = m_g + (1 - \mu_g)g_{t-1} + \mu_g \mathbb{E}_t g_{t+1} - \phi(r_t - \mathbb{E}_t \pi_{t+1}) + \sigma_g \epsilon_t^g$$

(PC) $\pi_t = m_\pi + (1 - \mu_\pi)\pi_{t-1} + \mu_\pi \mathbb{E}_t \pi_{t+1} + \delta g_t + \sigma_\pi \epsilon_t^\pi$
(MP) $r_t = m_r(s_t^m) + \rho(s_t^m)r_{t-1} + \hat{\alpha}(s_t^m)\mathbb{E}_t \pi_{t+1} + \hat{\beta}(s_t^m)g_t + \sigma_r(s_t^d)\epsilon_t^r$

 \Rightarrow VAR with constraints: $x_t = (g_t, \pi_t, r_t)$,

$$x_t = m(S_t) + \Phi(S_t)x_{t-1} + \Sigma(S_t)\varepsilon_{t+1},$$

・同 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	o●oooo	00	0000	O
Asset fun	damentals				

Five assets: Stock market & four real estate categories.

→ 御 → → 注 → → 注 →

э

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	o●oooo	00	0000	O
Asset fun	damentals				

Five assets: Stock market & four real estate categories. Asset j has **expected** income growth rate:

$$\nu_{j,t} = a_j(\omega_t^j) + \gamma_{j,\pi}(\omega_t^j)\pi_t + \gamma_{j,g}(\omega_t^j)g_t + u_{j,t},$$

 $u_{j,t} \sim N(0, \sigma_j(\omega_t^j))$, indep of ε_t 's ω_t^j an asset-specific regime (2-state Markov, indep)

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	o●oooo	00	0000	O
Asset fun	damentals				

Five assets: Stock market & four real estate categories. Asset j has **expected** income growth rate:

$$\nu_{j,t} = a_j(\omega_t^j) + \gamma_{j,\pi}(\omega_t^j)\pi_t + \gamma_{j,g}(\omega_t^j)g_t + u_{j,t},$$

$$u_{j,t} \sim N(0, \sigma_j(\omega_t^j))$$
, indep of ε_t 's
 ω_t^j an asset-specific regime (2-state Markov, indep)

For the four real estate assets: $\omega_t^j \equiv \omega_t^{re}$, and

$$u_{j,t} = w_{j,t} + \sigma_{j,Z}(\omega_t^{re})Z_t, \quad j \in \{A, I, O, R\},\$$

 $w_{j,t}, Z_t, u_{m=market}$ uncorrelated

@▶ ◀ ⋽ ▶ ◀ ⋽

Asset pri					
Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	oo●ooo	00	0000	0

Under the \mathbb{Q} -measure:

$$x_t^{\mathbb{Q}} = m^{\mathbb{Q}}(S_t) + \Phi^{\mathbb{Q}}(S_t)x_{t-1} + \Sigma(S_t)\varepsilon_t^{\mathbb{Q}}, \qquad (1)$$

where

$$m^{\mathbb{Q}}(S_t) = m(S_t) - \Sigma(S_t)\Sigma'(S_t)\Pi_0$$

$$\Phi^{\mathbb{Q}}(S_t) = \Phi(S_t) - \Sigma(S_t)\Sigma'(S_t)\Pi_x,$$

and

$$\nu_{j,t}^{\mathbb{Q}} = a_j(\omega_t^j) + \gamma_{j,\pi}(\omega_t^j)\pi_t^{\mathbb{Q}} + \gamma_{j,g}(\omega_t^j)g_t^{\mathbb{Q}} - \ell_j(\omega_t^j) + u_{j,t}^{\mathbb{Q}},$$

Mkt: $\ell_j(\omega_t^j) = \lambda_m \sigma_{m,u}(\omega_t^m);$ RE: $\ell_j(\omega_t^j) = \lambda_Z \sigma_{j,W}(\omega_t^{re}).$

・ロト ・回ト ・ヨト ・ヨト

æ

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	ooo●oo	00	0000	O
Asset pri	cing: Sneal	kv stuff			

Only shocks to expected growth rates of income are priced.

I.e., level shocks to income are not priced

This is consistent with the long-run risk literature:

$$\mathbb{E}_t[\frac{D_{t+1}}{D_t}] = \mathbb{E}_t^{\mathbb{Q}}[\frac{D_{t+1}}{D_t}] = e^{\nu_t}.$$

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	ooo●oo	00	0000	O
Asset pri	cing: Sneal	kv stuff			

Only shocks to expected growth rates of income are priced.

I.e., level shocks to income are not priced

This is consistent with the long-run risk literature:

$$\mathbb{E}_t[\frac{D_{t+1}}{D_t}] = \mathbb{E}_t^{\mathbb{Q}}[\frac{D_{t+1}}{D_t}] = e^{\nu_t}.$$

Consequently:

$$\mathsf{PV}_t[\{D_\tau\}_{\tau=t+1}^N] = D_t \sum_{\tau=t+1}^N \mathbb{E}_t^{\mathbb{Q}} \Big[e^{\sum_{s=t}^{\tau-1} (\nu_s - r_s)} \Big].$$

and the (presumably stationary) price-to-earnings ratio (inverse "cap rate") is:

$$Q_t \equiv \frac{\mathsf{PV}_t[\{D_\tau\}_{\tau=t+1}^N]}{D_t} = \sum_{\tau=t+1}^N \mathbb{E}_t^{\mathbb{Q}} \Big[e^{\sum_{s=t}^{\tau-1} (\nu_s - r_s)} \Big].$$

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	○○○○●○	00	0000	O
Ohserval	ole vs mode	el variables			

We observe:

- With measurement error $\nu_{j,t}, \mathcal{Q}_{j,t}, \mathcal{B}_{t,\tau}$
 - 3 bond time series (2-, 5-, 10-yr ZCBs)
 - 5 income & 5 cap rate time series
- Without measurement error (assumption): $x_t = (g_t, \pi_t, r_t)$
 - 3 times series
- We must filter: $s_t^m, s_t^d, \omega_t^{re}, \omega_t^m$

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	○○○○●○	00	0000	O
Ohserval	ole vs mode	al variables			

We observe:

- With measurement error $\nu_{j,t}, \mathcal{Q}_{j,t}, \mathcal{B}_{t,\tau}$
 - 3 bond time series (2-, 5-, 10-yr ZCBs)
 - 5 income & 5 cap rate time series
- Without measurement error (assumption): $x_t = (g_t, \pi_t, r_t)$
 - 3 times series
- We must filter: $s_t^m, s_t^d, \omega_t^{re}, \omega_t^m$

We calculate:

- $\hat{Q}_{j,t}$ (approximately)
- Bond prices

о́ (

Parameter symbol	# parameters	Notes
macro fundamentals	30	
m_i	2	drift $(i = g, \pi)$
μ_i	2	smoothing $(i = g, \pi)$
ϕ	1	output gap response to real cost of capital
σ_i	2	shock volatility $(i = g, \pi)$
δ	1	inflation reaction to output gap
$\operatorname{Prob}(s^m s^m)$	2	probability of staying in current regime (s^m =Passive or Active)
$\operatorname{Prob}(s^d s^d)$	2	probability of staying in current regime (s^d =Flexible or Rigid)
$m_r(s^m)$	2	regime-dependent rate drift
$\rho(s^m)$	2	regime-dependent rate smoothing
$\hat{\alpha}(s^m)$	2	regime-dependent rate response to inflation
$\hat{\beta}(s^m)$	2	regime-dependent rate response to output gap
$\sigma_r(s^d)$	2	regime-dependent rate deviation from smoothed target
σ_y	1	pricing (measurement) error in bond yields
$\Pi_{0,i}$	2	static risk premia $(i = g, r)$
$\Pi_{x,ii'}$	5	drift risk-adjustment $(ii' = gg, \pi\pi, rr, \pi r, gr)$
asset fundamentals	64	
$\operatorname{Prob}(\omega^{re} \omega^{re})$	2	Probability of staying in current RE regime
$\operatorname{Prob}(\omega^{mkt} \omega^{mkt})$	2	Probability of staying in current market regime
$a_i(\omega)$	10	asset income drift $(j = A, I, O, R, m)$
$\gamma_{j,\pi}(\omega)$	10	asset income inflation sensitivity $(j = A, I, O, R, m)$
$\gamma_{j,g}(\omega)$	10	asset income output gap sensitivity $(j = A, I, O, R, m)$
$\sigma_{j,W}(\omega^{re})$	8	real estate income idiosyncratic volatility $(j = A, I, O, R)$
$\sigma_{j,Z}(\omega^{re})$	8	real estate income common shock volatility $(j = A, I, O, R)$
$\sigma_{m,u}(\omega^{mkt})$	2	market income volatility $(j = A, I, O, R)$ (net of macro fundamentals)
$\sigma_{j,Q}$	5	pricing (measurement) error in asset $(j = A, I, O, R, m)$
$\sigma_{j,\nu}$	5	measurement error in expected asset income growth $(j = A, I, O, R, m)$
λ_Z	1	real estate risk Sharpe ratio (net of macro fundamentals)
λ_m	1	market risk Sharpe ratio (net of macro fundamentals)

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	○○○○○●	00	0000	O
Estimatio	n approach	<u>ו</u>			

Maximum likelihood

- Omit 2006-2008 for RE prices
- Omit 2009q1-q2 for stock market income/prices

Simulate 10⁶ points inside a hypercube of parameter space Evaluate log-likelihood function at each point Find local stationarity-constrained optima near top 1000 points Select highest local optimum Bootstrap confidence interval

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	000000	●0	0000	O
Data					

- Real Estate: NCREIF
 - NPI Assets
 - Categorized as: Apartments, Industrial, Office, Retail
 - Aggregated quarterly NOI growth, market values
- Stock market: Datastream I/B/E/S 12m-Fwd aggregate earnings and PE ratio
- Bond market: Fama-Bliss 3m, 2yr, 5yr, 10yr ZCBs
- Output gap: Hodrick-Prescott filter using real quarterly GDP
- Inflation: Annual log change of personal consumption expenditures

伺 ト イ ヨ ト イ ヨ ト

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	000000	⊙●	0000	0
Results					

We estimate four versions of the model (report only first three)

- Only assets are bonds (TSM)
- Add apartments, but force RE regime to coincide with s^m_t (CAP(Apts)₀)
- Allow RE regime to be independent of s_t^m (CAP(Apts)₁)
- $\bullet\,$ Similar to last, but use all five assets (4 \times RE + Mkt)

同 ト イヨ ト イヨ ト

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	000000	⊙●	0000	0
Results					

We estimate four versions of the model (report only first three)

- Only assets are bonds (TSM)
- Add apartments, but force RE regime to coincide with s^m_t (CAP(Apts)₀)
- Allow RE regime to be independent of s_t^m (CAP(Apts)₁)
- $\bullet\,$ Similar to last, but use all five assets (4 \times RE + Mkt)

Let's look at

- Estimated regimes
- Fit to asset prices

Fig. 3: Smoothed regime probabilities for the TSM and $CAP(Apts)_1$ models. The smoothed probabilities for the $CAP(Apts)_0$ are very close to those of the TSM model.

Fig. 4: Depiction of the CAP (Apts)_0 model fit to the data. We exclude real state cap rate data from 2006q1-2008q4 in our estimation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Fig. 5: Depiction of the CAP(Apts)₁ model fit to the data. We exclude real state cap rate data from 2006q1-2008q4 in our estimation. $\langle \Box \rangle \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \langle$

JAG.

æ

Fig. 6: Depiction of a preliminary full model fit to the data. We exclude real state cap rate data from 2006q1-2008q4 and exclude stock market data from 2009q1 and 2009q2 in our estimation.

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	000000	00	●000	O
Model pi	redictions				

The model is ready-made for

- Analyzing price dynamics in the various regimes
- Assessing impact of changing monetary policy regimes
- Quantitative risk analysis

 Introduction
 Motivation
 Model
 Estimation
 Dynamics
 Conclusions

 Regime dynamics:
 CAP(Apts)1
 model
 oo
 oo
 oo

In each of 8 compound regimes: $s^m imes s^{re} imes s^m$

- Calculate the mean and variance of macro variables (x) conditional only on being in regime
- Draw x from each distribution 10,000 times and calculate each Q(x)
- Find median Q and corresponding x
- Use as starting point & simulate evolution over 10 years
- Track: Average Q (cap rate), income growth, price appreciation

- 4 同 2 4 日 2 4 日 2 4

Regime	g	π	r	ZCB ₁₀ Yield
AHF	-1.81	-0.63	4.63	6.64
AHR	-2.57	2.11	4.88	7.13
ALF	3.47	1.93	4.86	8.29
ALR	2.67	1.65	4.86	6.92
\mathbf{PHF}	-1.76	1.02	3.24	6.67
PHR	-4.33	2.01	3.49	6.17
PLF	4.21	3.76	3.87	8.73
PLR	4.95	4.31	3.93	7.85

(c) MP Regimes: Active, Flexible. RE Regime: Low.

(b) MP Regimes: Active, Rigid. RE Regime: High.

(d) MP Regimes: Active, Rigid. RE Regime: Low.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへで

(a) MP Regimes: Passive, Flexible. RE Regime: High.

(c) MP Regimes: Passive, Flexible. RE Regime: Low.

(b) MP Regimes: Passive, Rigid. RE Regime: High.

(d) MP Regimes: Passive, Rigid. RE Regime: Low.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	000000	00	00●0	O
Impact c	of regime ch	anges			

Same procedure as before, but....

- At t = 1, force a regime change (flip one of s^m, s^{re} or s^m)
- Proceed as before

-∢ ≣ ▶

(c) MP Regimes: Active, Flexible. RE Regime: Low.

(b) MP Regimes: Active, Rigid. RE Regime: High.

(d) MP Regimes: Active, Rigid. RE Regime: Low.

▲ロト ▲御ト ▲ヨト ▲ヨト 三臣 - のへで

(a) MP Regimes: Passive, Flexible. RE Regime: High.

(c) MP Regimes: Passive, Flexible. RE Regime: Low.

(b) MP Regimes: Passive, Rigid. RE Regime: High.

(d) MP Regimes: Passive, Rigid. RE Regime: Low.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Quantita	ntive risk an	alvsis			
Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	000000	00	000●	0

Regional banks have significant exposure to CRE through lending

- If RE income is uncorrelated with interest rates then rising rates mean lower collateral value
- If RE income is correlated with interest rates (via inflation) then effect above is moderated
- We can estimate collateral value as a function of macro fundamentals and regime
- Example: Assess impact of MP on mortgage spreads
 - Initialize regimes as before
 - Simulate zero-coupon 10-year mortgage payoffs at various LTVs

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	000000	00	0000	•
Conclusio	ons & rema	ining worl	<		

Conclusions

David Leather and Jacob S. Sagi Monetary Policy and Commercial Real Estate Price Dynamics

・ロト ・回ト ・ヨト ・ヨト

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	000000	00	0000	•
Conclusi	ons & rema	ining worl	<		

- Conclusions
 - MP has profound impact on RE prices
 - Structural breaks are important
 - Need more than canned term-structure model of interest rates

伺 ト く ヨ ト く ヨ ト

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	000000	00	0000	•
Conclusi	ons & rema	aining worl	K		

- Conclusions
 - MP has profound impact on RE prices

o

- Structural breaks are important
- Need more than canned term-structure model of interest rates
- Joint estimation of prices & fundamentals can
 - Better pin down noisy proxies for variables with slow-moving trends
 - Clarify relationship between asset prices and asset + macro fundamentals

伺 ト イヨト イヨト

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
00000	00	000000	00	0000	•
Conclusi	ons & rema	aining wor	ĸ		

- Conclusions
 - MP has profound impact on RE prices
 - Structural breaks are important
 - Need more than canned term-structure model of interest rates
 - Joint estimation of prices & fundamentals can
 - Better pin down noisy proxies for variables with slow-moving trends
 - Clarify relationship between asset prices and asset + macro fundamentals
- Remaining work
 - Polish estimation methodology
 - Explore different proxies for RE fundamentals
 - Other suggestions?

Introduction	Motivation	Model	Estimation	Dynamics	Conclusions
					•

David Leather and Jacob S. Sagi Monetary Policy and Commercial Real Estate Price Dynamics

◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ● ◆ ●