A New Look at the U.S. Foreclosure Crisis: Panel Data Evidence of Prime and Subprime Lending

Fernando Ferreira and Joseph Gyourko
The Wharton School
University of Pennsylvania
Large Literature on the Crisis

• Mostly focus on subprime sector
 • ¾ of 30+ papers published on the subject since 2008
 • Ex. Mian and Sufi (2009)

• Mostly loan level data sets
 • Loan Performance—securitized subprime (private label market)
 • Sometimes merged with credit bureau data (Equifax)
 • Ex. Mayer, Pence, and Sherlund (2009)

• Mostly with limited time periods due to subprime focus
 • Typically end no later than 2008
 • Securitized subprime market becomes widespread by 2005

• Findings of very large default rates in subprime sector
 • Explanations: loan traits, securitization incentives, etc.
Traditional Mortgage Default Literature

• Mostly focus on two factors:
 • Negative equity from falling house prices
 • Borrower illiquidity from negative income shock
 • Ex. Foote, et. al. (2010): Double trigger hypothesis

• More correlated with economic cycle; may be independent of subprime status
Our Paper

• Economic analysis of the foreclosure crisis that integrates both strands of literature

• Can common factors explain subprime/prime differences in propensity to foreclose?
 • Housing traits, household traits, loan traits, local economic shocks, and negative equity-timing of last transaction

• Provide (new?) stylized facts about foreclosure crisis
Our Paper

• How?
 • Create large panel of ownership sequences
 • 800 million quarterly observations on these ownership sequences

• Examine entire market over full cycle
 • Subprime, FHA/VA, Prime, Cash
 • 96 MSAs from 1993-2012

• Estimate panel regressions with micro data
 • Deal with previously unobserved heterogeneity as best as possible
Roadmap

1) Intro
2) Creating the panel
3) Stylized facts
4) Panel estimates
5) Conclusion
Creating the Panel

• DataQuick micro data

 • Sales, initial mortgages, refis, and seconds

 • Entire market for 96 MSAs with good data since at least 1998, most data starts in 1993-1994

 • Date of purchase and transaction price, address and census tract code, names of purchaser and seller (including investors/speculators), loan amounts and lender names (3 loans), and house characteristics

 • All non-arms-length transactions included; Foreclosures clearly identified

 • Merged with HMDA to include race, gender, and self-reported income
Data Representativeness

<table>
<thead>
<tr>
<th></th>
<th>All U.S. (1)</th>
<th>DataQuick (2)</th>
<th>Final (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of MSAs</td>
<td>362</td>
<td>269</td>
<td>99</td>
</tr>
<tr>
<td>Population of MSAs</td>
<td>642,486 (1,485,668)</td>
<td>809,386 (1,691,640)</td>
<td>1,322,485 (2,520,843)</td>
</tr>
<tr>
<td>% East</td>
<td>0.21 (.34)</td>
<td>0.22 (.35)</td>
<td>0.24 (.37)</td>
</tr>
<tr>
<td>% Midwest</td>
<td>0.22 (.44)</td>
<td>0.20 (.41)</td>
<td>0.17 (.31)</td>
</tr>
<tr>
<td>% South</td>
<td>0.33 (.49)</td>
<td>0.32 (.49)</td>
<td>0.19 (.44)</td>
</tr>
<tr>
<td>% West</td>
<td>0.24 (.41)</td>
<td>0.26 (.44)</td>
<td>0.40 (.51)</td>
</tr>
<tr>
<td>% White</td>
<td>0.73 (.14)</td>
<td>0.72 (.14)</td>
<td>0.69 (.15)</td>
</tr>
<tr>
<td>% Black</td>
<td>0.13 (.11)</td>
<td>0.13 (.11)</td>
<td>0.12 (.09)</td>
</tr>
<tr>
<td>% College Degree</td>
<td>0.24 (.07)</td>
<td>0.24 (.07)</td>
<td>0.26 (.07)</td>
</tr>
<tr>
<td>Median Family Income</td>
<td>$53,574 (9,497)</td>
<td>$54,017 (9,564)</td>
<td>$56,252 (10,382)</td>
</tr>
<tr>
<td>Median House Value</td>
<td>$149,545 (60,794)</td>
<td>$153,381 (62,683)</td>
<td>$186,629 (75,842)</td>
</tr>
</tbody>
</table>
Creating the panel (cont’d.)

- **Types of Transactions**
 - **Sales/Purchases**
 - Arms-length trades between HHs (~80% of all sales/purchases)
 - Sales of new homes from builders (~11%)
 - Sales out of foreclosure (~9%)
 - **Financings Subsequent to Purchase (and before sale)**
 - Refinances (34 million cases) - Rule-based definition: 50% of outstanding loan amount or imputed property value
 - Junior debt (i.e., seconds; 14 million cases) - If not a refinancing, it’s a second
Creating the Panel (con’d.)

Share of Purchases, Refis, Seconds Over Time

-
-
-

1997q1, 2001q1, 2005q1, 2009q1, 2013q1

- share_purchases
- share_refis
- share_seconds
Creating the Panel (cont’d.)

• Unique ownership sequences
 • This is the complete span of time a given owner owns a specific residence
 • 55.7 million ownership sequences; 32.2 million housing units
 • 2010 Census indicates 31.4 million owner-occupied units in our 96 MSAs

• Final sample
 • 42.4 million ownership sequences; 20.9 million housing units
 • Sequences dropped if we cannot impute current LTV
 • Happens if we do not observe a valid price or if house bought prior to 1993
Creating the Panel (cont’d.)

• Five types of financing

 • Subprime loans (15%)
 • Lender lists (we do not have credit scores)
 • Annual HUD lists since 1997
 • Inside Mortgage Finance since 1990
 • Loan not insured by FHA or VA

 • Government loans (10%)
 • FHA/VA-insured loans
 • Separate variable in DataQuick identifying these loans
 • Sometimes directly identified in lender codes
Creating the Panel (cont’d.)

• Types of financing (cont’d.)

 • Cash (11%)
 • Bought your home with no debt

 • Small lenders and typos (2%)
 • Lenders with less than 100 loans issued during complete time period
 • Lenders with personal names

 • Prime (61%)
 • If you took out debt and you are not Subprime, Gov’t, or Small then you are Prime
Shares of Ownership Types Over Time

![Graph showing shares of ownership types over time](image)

Legend:
- **Subprime**
- **Prime**
- **Government**
Shares of Ownership Types Over Time: Aggregate (bold line) and MSA-Level (gray lines)
Creating the Panel (cont’d.)

• Use simple hedonics to create constant quality price series
 • Able to create neighborhood-level price series
 • Groups of 4-6 census tracts

• MSA-level series very highly correlated with repeat sales indexes

• Use neighborhood-level series to impute LTVs
 • Presume all debt is 30yr, FRM product
 • Almost certainly leads to understatement of LTVs, especially for subprime borrowers
Neighborhood-Level Constant Quality Prices: Boston, Las Vegas, Phoenix and San Francisco
• Measures of distress

 • Foreclosures clearly identified in DataQuick with special distress code (2.1 million cases, or 0.26% of all observations)
 • Can confirm this by looking at name of ‘buyer’; Typically some type of financial institution (bank, RMBS pool number, special servicer, etc.)
 • Local tax authority or other local public entity for Cash; Non-payment of taxes appears to underlie these losses to foreclosure

 • Short-sales (~1 million cases, or 0.12% of all observations)
 • Inputted by DataQuick via proprietary information and model
 • We also used our own decision rule: transactions that occur at 90% current LTV or less
 • Both measures are highly correlated; prefer our measure due to better coverage
Quarterly Foreclosure Rates Over Time: Aggregate (bold line) and by MSA (gray lines) (per owner-occupied unit)
Mortgage Type Foreclosure Share Over Time
Summary Statistics by LTV and Timing of Loan Origination
Creating the Panel (last “data” slide!)

• Caveats
 • Unbalanced panel since data does not have ownerships that started prior to 1993
 • Estimate all models with data since 1997

 • No information on timing of default
 • But can observe loan that went bad

 • No household level information on employment status
 • Main limitation of data set (and literature)
 • Use household fixed effects to deal with all fixed factors, including propensity to get unemployed (more on this below)
Econometric Model 1

• Panel Estimation #1: Foreclosure is a function of:

 • Type of financing (Subprime, Government, Prime, Small – Cash is the omitted category)
 • Shows unconditional differences in propensity to default

 • Then add groups of traits:
 • Housing: size, # bedrooms, # bathrooms.
 • Household: race, gender, self-reported income, speculator
 • Loan: refi, second, initial LTV, age of the loan
 • Local economic conditions: tract by quarter fixed effects
 • Negative equity and timing of last origination: current LTV and fixed effects for origination cohort

 • Compare evaluation of conditional differences
Econometric Model 2

• Leads to estimation of second specification with household fixed effects
 • Controls for permanent component of omitted factors such as wealth, employability, etc.
 • Black box - difficult to distinguishing among those factors

• This specification is identified from variation among those who switch financing types (from prime to subprime or from subprime to prime for example) within their ownership sequence
 • Large number of switchers (~30% of all ownerships)
 • Not random sample (all refi, more likely to be minority (25% instead of 21%), less self-reported income (7% less self-reported income), more concentrated in California)
Number of Mortgage Type Switchers Over Time
Results: Average Estimates (Panel Model #1)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subprime</td>
<td>0.0059</td>
<td>0.0059</td>
<td>0.0038</td>
<td>0.0060</td>
<td>0.0068</td>
<td>0.0057</td>
<td>0.0027</td>
</tr>
<tr>
<td></td>
<td>(0.00006)</td>
<td>(0.00006)</td>
<td>(0.00004)</td>
<td>(0.00008)</td>
<td>(0.00007)</td>
<td>(0.00001)</td>
<td>(0.00001)</td>
</tr>
<tr>
<td>Prime</td>
<td>0.0019</td>
<td>0.0019</td>
<td>0.0006</td>
<td>0.0024</td>
<td>0.0032</td>
<td>0.0027</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>(0.00005)</td>
<td>(0.00004)</td>
<td>(0.00003)</td>
<td>(0.00007)</td>
<td>(0.00005)</td>
<td>(0.00000)</td>
<td>(0.00001)</td>
</tr>
<tr>
<td>Govt</td>
<td>0.0023</td>
<td>0.0023</td>
<td>-0.0027</td>
<td>0.0024</td>
<td>0.0020</td>
<td>-0.0012</td>
<td>-0.0015</td>
</tr>
<tr>
<td></td>
<td>(0.00004)</td>
<td>(0.00004)</td>
<td>(0.00004)</td>
<td>(0.00007)</td>
<td>(0.00004)</td>
<td>(0.00001)</td>
<td>(0.00001)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Observations</th>
<th>House Traits</th>
<th>Loan Traits</th>
<th>Household Traits</th>
<th>TractxQtr FE</th>
<th>Origination Qtr FE</th>
<th>Current LTV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>797,634,223</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>797,633,416</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>797,634,223</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>797,634,223</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>797,634,223</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>797,633,416</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>797,633,416</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Unexplained Foreclosure Rate Gaps

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subprime-Prime</td>
<td>0.0040</td>
<td>0.0040</td>
<td>0.0032</td>
<td>0.0036</td>
<td>0.0036</td>
<td>0.0030</td>
<td>0.0023</td>
</tr>
</tbody>
</table>
Results: Household Fixed Effects (Panel Model #2)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subprime</td>
<td>0.0011</td>
<td>-0.0006</td>
</tr>
<tr>
<td></td>
<td>(0.00003)</td>
<td>(0.00003)</td>
</tr>
<tr>
<td>Prime</td>
<td>0.0000</td>
<td>-0.0013</td>
</tr>
<tr>
<td></td>
<td>(0.00003)</td>
<td>(0.00003)</td>
</tr>
<tr>
<td>Govt</td>
<td>-0.0020</td>
<td>-0.0025</td>
</tr>
<tr>
<td></td>
<td>(0.00003)</td>
<td>(0.00003)</td>
</tr>
<tr>
<td>Observations</td>
<td>797,634,225</td>
<td>797,634,225</td>
</tr>
<tr>
<td>YrxQtr FE's</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HH FE's</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Current LTV</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Unexplained Foreclosure Rate Gaps

| Subprime-Prime | 0.0011 | 0.0007 |
Interpretation

• Previously unobserved heterogeneity important

 • Large origination cohort and negative equity effects
 • Common across subprime and prime borrowers
 • Surge in prime foreclosures appears due to ‘bad luck’

 • Smaller but important role for loan traits
 • We are investigating importance of refi dummy

 • Very small role for observed housing and household traits

 • Fixed effects for local economic conditions have little effect as well
 • Need individual employment status

 • Household fixed effects largely eliminates subprime/prime gap
 • Subprime status is irrelevant for the propensity to foreclose of these households
Conclusions and Future Work

• Foreclosure crisis not solely one of subprime
 • More prime borrowers lost their homes—just with a lag
 • Interesting differences between our Subprime and Government groups, too

• Macroprudential regulation focused on loan traits of subprime sector
 • May not mitigate much cyclical risk

• How to prevent homeowners from buying homes with debt financing near the peak of the cycle?

• More work is needed to test borrower illiquidity assumption
Conclusions and Future Work

• Next Up:
 • Linear probability models reported in this version
 • Due to computing constraints arising from size of sample
 • Moving data and programs to AWS – maybe some hope for non-linear models

• Heterogeneity and robustness
 • By geography and time
 • By subprime lenders

• More on understanding switchers
 • Selection or random choice?