# **Re-default Risk of Modified Mortgages**

Jian Chen, Jin Xiang, Tyler Yang IFE Group

May 2014



### Mortgage Risk Analysis Framework

Competing risk approach





# **Status Transition Approach**





# **Incorporate Path Memory**



#### Data

- FHA loans originated between 1996-2012
- Quarterly loan performance panel observations
  - Avoided sensor problem
  - Incorporate local market economic condition
  - Capture prior modification and cure history
- Two sets of multinomial logistic regression
  - C\_D, C\_CX, C\_PRE, C\_SR, C\_C
  - D\_CXS, D\_CXM, D\_PRE, D\_CLM, D\_D



### Choice Based Sample

- 10% of good loans; 100% of bad loans
- 10% of quarters before ever-default; 100% of quarters after 1<sup>st</sup> default.

|           | Sample<br>Observations | Total Original<br>Observations | Sample Rate |
|-----------|------------------------|--------------------------------|-------------|
| C to C    | 20,024,231             | 158,984,465                    | 13%         |
| C to CX   | 186,815                | 186,815                        | 100%        |
| C to D    | 2,550,952              | 2,586,844                      | 99%         |
| C to PRE  | 584,758                | 3,756,763                      | 16%         |
| C to SR   | 201,556                | 1,741,915                      | 12%         |
| D to PRE  | 159,939                | 159,939                        | 100%        |
| D to CLM  | 658,541                | 694,433                        | 95%         |
| D to CX_M | 324,789                | 324,789                        | 100%        |
| D to CX_S | 747,035                | 747,035                        | 100%        |
| Total     | 25,438,616             | 169,182,998                    | 15%         |

# Modification as Loss Mitigation

- As an alternative way to enable refinance
  - Otherwise constrained by LTV or DTI to qualify for refinance loan
  - To avoid realizing default loss on book
  - Hope house price recovery will bailout default loss
- Policy objectives
  - Help borrowers keep their homes
  - Avoid massive default wave bring banking system down
  - Reduce number of REO sales on market, which could exacerbate housing market deterioration



### **Research Issues with Modification**

- Which loans benefits from modification the most?
  - To minimize potential default loss = eventual PD x LGD
- What type of modifications to offer?
  - Forbearance, Rate Reduction, Term extension, Principal forgiveness
- What's the re-default risk of modified mortgages?
  - ► OCC reports 5-year re-default rate ≈ 70%
  - What are the main risk drivers after modification
- What's the LGD of modified mortgages?
  - Higher LGD due to more deterioration in physical condition and longer expenses



# Current to Delinquent Transition (PD)

| Variable                    | Name             | Values          | current_default |         |
|-----------------------------|------------------|-----------------|-----------------|---------|
| Number of living units      | liv_units_34     | X=0/1           |                 | 0.0789  |
|                             | dpa_govt         | X=0/1           |                 | 0.1726  |
| Downpayment assistant types | dpa_nonprof      | X=0/1           |                 | 0.3402  |
|                             | dpa_relative     | X=0/1           |                 | 0.1097  |
| Relative loan size          | loansize         | linear function |                 | 0.0007  |
| 1                           | ltv100           | X=0/1           |                 | -0.0290 |
| LIV                         | ltv95            | X=0/1           |                 | 0.0720  |
| Spread at origination       | sato1            | Spling function | 0               | -0.0596 |
|                             | sato2            | spille function | >0              | 0.3891  |
|                             | credit_score1    | Spline function | 600             | -0.0025 |
| Credit score                | credit_score2    |                 | 660             | -0.0094 |
|                             | credit_score3    |                 | >660            | -0.0128 |
| Missing credit score        | credit_score_000 | X=0/1           |                 | -0.1338 |
| No credit score returned    | credit_score_999 | X=0/1           |                 | -0.6088 |
| FHA credit score indicator  | fha_score        | X=0/1           |                 | -0.1757 |
| Front-end Ratio             | ratio_tmp_tei1   | Spling function | 28              | 0.0296  |
|                             | ratio_tmp_tei2   | spille function | >28             | 0.0095  |
| Missing front-end ratio     | dti000           | X=0/1           |                 | -0.0691 |

# **Dynamic Variables**

| Variable                                               | Name               | Values          | curre | nt_default |
|--------------------------------------------------------|--------------------|-----------------|-------|------------|
|                                                        | ltv_current1       |                 | 1     | 1.3791     |
|                                                        | ltv_current2       | Spling function | 1.2   | 0.8968     |
|                                                        | ltv_current3       | spine function  | 1.4   | 1.4451     |
|                                                        | ltv_current4       |                 | >1.4  | 0.0000     |
| House price appreciation local level                   | hpa2y_n            | linear function |       | -0.0128    |
| Burnout factor. Prior                                  | burnout1           | ~ !!            | 9     | 0.0007     |
| cimulative number of quarters prepayment option in the | burnout2           | Spline function | >9    | -0.0015    |
| Cumulative number of                                   | c_burnout1         | Spling function | 6     | 0.0077     |
| quarters under water                                   | c_burnout2         | Spille function | >6    | -0.0252    |
| Unemployment rate change in <b>delta_ue1</b>           |                    | Spling function | 0     | 0.1183     |
| last two quarters                                      | delta_ue2          |                 | >0    | 0.1771     |
| Difference of 10 year and 1<br>year CMT rates          | ycslope            | linear function |       | 0.0280     |
|                                                        | GSE_refi_ince_PMT1 |                 | 0     | 0.0082     |
| interest rate                                          | GSE_refi_ince_PMT2 | Spline function | 25    | 0.0234     |
| interest rate                                          | GSE_refi_ince_PMT3 |                 | >25   | -0.0317    |

# **Modification Variables**

| Variable                                                | Name                 | Values                      | current_default |         |
|---------------------------------------------------------|----------------------|-----------------------------|-----------------|---------|
| Prior loan modification                                 | prior_mod            | X=0/1                       |                 | 0.1446  |
| Demonstrate monthly never out                           | mod_pay_pct_rdct1    |                             | 0.16            | -5.7670 |
| reduction of loan modification                          | mod_pay_pct_rdct2    | y_pct_rdct2 Spline function | 0.36            | 3.1272  |
|                                                         | mod_pay_pct_rdct3    |                             | >0.36           | 1.8231  |
| Missing payment reduction                               | mis_mod_pay_pct_rdct | X=0/1                       |                 | -0.1508 |
| Mortgage age function                                   | age1                 |                             | 2               | 1.4014  |
|                                                         | age2                 | Spline function             | 5               | 0.1524  |
|                                                         | age3                 |                             | >5              | -0.0030 |
|                                                         | cx_time1             | Spling function             | 1               | 2.2639  |
| Number of quarters since end<br>of last default episode | cx_time2             |                             | 10              | -0.1108 |
|                                                         | cx_time3             | Spine function              | 25              | -0.0286 |
|                                                         | cx_time4             |                             | >25             | -0.0041 |
|                                                         | season_fall          | X=0/1                       |                 | 0.3024  |
| Season of year                                          | season_spring        | X=0/1                       |                 | -0.0726 |
|                                                         | season_summer        | X=0/1                       | 0.1606          |         |
| Intercept Term                                          | contstant            |                             |                 | -7.9545 |



# Payment Reduction Dummy Variables





# Implications

If house price growth = 0 for the next x years, the percent of re-default rate of modified loans would be

| Quarterly | 1-Year | 2-Year | 5-Year | 10-Year |
|-----------|--------|--------|--------|---------|
| 5%        | 18.5%  | 33.7%  | 64.2%  | 87.1%   |
| 10%       | 34.4%  | 57.0%  | 87.8%  | 98.5%   |
| 15%       | 47.8%  | 72.8%  | 96.1%  | 99.8%   |
| 20%       | 59.0%  | 83.2%  | 98.8%  | 100.0%  |
| 25%       | 68.4%  | 90.0%  | 99.7%  | 100.0%  |

Optimal size of payment reduction is about 15-20%. Further reduction leads to increase in re-default risk



### Implications

- A modified loan with no payment reduction has redefault risk similar to a never defaulted loan with 200 points lower FICO score
- Modification of 18% payment reduction reduces redefault rate similar to the magnitude of 100 points higher FICO score
- Competing risk: re-default risk increases when refinance option is deep in the money
- Credit burnout: re-default risk decreases when continue payment through a period of underwater



# Further Questions

- Why does higher payment reduction increase redefault risk?
  - Implication of income shock to the family; harder to recover drastic income reduction
  - Rate reduction to below market rate implies borrower cannot afford the house
- LGD of modified loan
  - Correlation between payment reduction and LGD?
  - Does increase in LGD in modified loan offset the reduction in eventual PD?
- Is modification a good loss mitigation policy? In a rising interest rate environment?

