Re-default Risk of Modified Mortgages

Jian Chen, Jin Xiang, Tyler Yang
IFE Group

May 2014

Mortgage Risk Analysis Framework

- Competing risk approach

ffe

Status Transition Approach

ffe

Incorporate Path Memory

Data

- FHA loans originated between 1996-2012
- Quarterly loan performance panel observations
- Avoided sensor problem
- Incorporate local market economic condition
- Capture prior modification and cure history
- Two sets of multinomial logistic regression
- C_D, C_CX, C_PRE, C_SR, C_C
- D_CXS, D_CXM, D_PRE, D_CLM, D_D

Choice Based Sample

- 10% of good loans; 100% of bad loans
- 10% of quarters before ever-default; 100% of quarters after $1^{\text {st }}$ default.

	Sample Observations	Total Original Observations	Sample Rate
C to C	$20,024,231$	$158,984,465$	13%
C to CX	186,815	186,815	100%
C to D	$2,550,952$	$2,586,844$	99%
C to PRE	584,758	$3,756,763$	16%
C to SR	201,556	$1,741,915$	12%
D to PRE	159,939	159,939	100%
D to CLM	658,541	694,433	95%
D to CX_M	324,789	324,789	100%
D to CX_S	747,035	747,035	100%
Total	$25,438,616$	$169,182,998$	15%

ffe

Modification as Loss Mitigation

- As an alternative way to enable refinance
- Otherwise constrained by LTV or DTI to qualify for refinance loan
- To avoid realizing default loss on book
- Hope house price recovery will bailout default loss
- Policy objectives
- Help borrowers keep their homes
- Avoid massive default wave bring banking system down
- Reduce number of REO sales on market, which could exacerbate housing market deterioration

Research Issues with Modification

- Which loans benefits from modification the most?
- To minimize potential default loss = eventual PD x LGD
-What type of modifications to offer?
- Forbearance, Rate Reduction, Term extension, Principal forgiveness
- What's the re-default risk of modified mortgages?
- OCC reports 5 -year re-default rate $\approx 70 \%$
- What are the main risk drivers after modification
- What's the LGD of modified mortgages?
- Higher LGD due to more deterioration in physical condition and longer expenses

Current to Delinquent Transition (PD)

Variable	Name	Values	current_default	
Number of living units	liv_units_34	$\mathrm{X}=0 / 1$		0.0789
Downpayment assistant types	dpa_govt	$\mathrm{X}=0 / 1$		0.1726
	dpa_nonprof	$\mathrm{X}=0 / 1$		0.3402
	dpa_relative	$\mathrm{X}=0 / 1$		0.1097
Relative loan size	loansize	linear function		0.0007
LTV	ltv100	$\mathrm{X}=0 / 1$		-0.0290
	ltv95	$\mathrm{X}=0 / 1$		0.0720
Spread at origination	sato1	Spline function	0	-0.0596
	sato2		>0	0.3891
Credit score	credit_score1	Spline function	600	-0.0025
	credit_score2		660	-0.0094
	credit_score3		>660	-0.0128
Missing credit score	credit_score_000	$\mathrm{X}=0 / 1$		-0.1338
No credit score returned	credit_score_999	$\mathrm{X}=0 / 1$		-0.6088
FHA credit score indicator	fha_score	$\mathrm{X}=0 / 1$		-0.1757
Front-end Ratio	ratio_tmp_tei1	Spline function	28	0.0296
	ratio_tmp_tei2		>28	0.0095
Missing front-end ratio	dti000	$\mathrm{X}=0 / 1$		-0.0691

Dynamic Variables

Variable	Name	Values	current_default	
Current LTV		Spline function	1	1.3791
	Itv_current2		1.2	0.8968
	ltv_current3		1.4	1.4451
	ltv_current4		>1.4	0.0000
House price appreciation local level	hpa2y_n	linear function		-0.0128
Burnout factor. Prior cimulative number of quarters prepayment option in the	burnout1	Spline function	9	0.0007
	burnout2		>9	-0.0015
Cumulative number of quarters under water	c_burnout1	Spline function	6	0.0077
	c_burnout2		>6	-0.0252
Unemployment rate change in last two quarters	delta_ue1	Spline function	0	0.1183
	delta_ue2		>0	0.1771
Difference of 10 year and 1 year CMT rates	ycslope	linear function		0.0280
Effective GSE refinance interest rate	GSE_refi_ince_PMT1	Spline function	0	0.0082
	GSE_refi_ince_PMT2		25	0.0234
	GSE_refi_ince_PMT3		>25	-0.0317

Modification Variables

Variable	Name	Values	current_default	
Prior loan modification	prior_mod	$\mathrm{X}=0 / 1$		0.1446
Percentage monthly payment reduction of loan modification	mod_pay_pet_rdet1	Spline function	0.16	-5.7670
	mod_pay_pet_rdct2		0.36	3.1272
	mod_pay_pet_rdct3		>0.36	1.8231
Missing payment reduction	mis_mod_pay_pet_rdct	$\mathrm{X}=0 / 1$		-0.1508
Mortgage age function	age1	Spline function	2	1.4014
	age2		5	0.1524
	age3		>5	-0.0030
Number of quarters since end of last default episode	cx_time1	Spline function	1	2.2639
	cx_time2		10	-0.1108
	cx_time 3		25	-0.0286
	cx_time 4		>25	-0.0041
Season of year	season_fall season_spring season_summer	$\mathrm{X}=0 / 1$	0.3024 -0.0726 0.1606	
		$\mathrm{X}=0 / 1$		
		$\mathrm{X}=0 / 1$		
Intercept Term	contstant			-7.9545

ffe

Payment Reduction Dummy Variables

ffe

Implications

- If house price growth $=0$ for the next \times years, the percent of re-default rate of modified loans would be

Quarterly	1 -Year	2 -Year	5 -Year	$10-$ Year
5%	18.5%	33.7%	64.2%	87.1%
10%	34.4%	57.0%	87.8%	98.5%
15%	47.8%	72.8%	96.1%	99.8%
20%	59.0%	83.2%	98.8%	100.0%
25%	68.4%	90.0%	99.7%	100.0%

- Optimal size of payment reduction is about 15-20\%. Further reduction leads to increase in re-default risk

Implications

- A modified loan with no payment reduction has redefault risk similar to a never defaulted loan with 200 points lower FICO score
- Modification of 18% payment reduction reduces redefault rate similar to the magnitude of 100 points higher FICO score
- Competing risk: re-default risk increases when refinance option is deep in the money
- Credit burnout: re-default risk decreases when continue payment through a period of underwater

Further Questions

- Why does higher payment reduction increase redefault risk?
- Implication of income shock to the family; harder to recover drastic income reduction
- Rate reduction to below market rate implies borrower cannot afford the house
- LGD of modified loan
- Correlation between payment reduction and LGD?
- Does increase in LGD in modified loan offset the reduction in eventual PD?
- Is modification a good loss mitigation policy? In a rising interest rate environment?

