Collateral Analytics

Collateral Analytics

Regional Price Bubbles and Implications for

Credit Risk Management

Presentation to the May 2014 Meetings of the Weimer School James R. Follain, Ph. D. SVP for R&D at Collateral Analytics Senior Fellow at the Rockefeller Institute of Government

Basis of Presentation

- Based upon 3 working papers for the Lincoln Institute of Land Policy that estimate models of house price growth during three different time frames and using various methods.
 - These are available at the LILP web site: <u>http://www.lincolninst.edu/pubs/default.aspx?pub_type=3</u>
 - Two were coauthored with Prof. Seth Giertz of the U of Nebraska <u>http://cba.unl.edu/people/sgiertz/</u>
- We also produced a Policy Focus Report entitled "Preventing House Price Bubbles: Lessons from the 2006-2012 Bust" (2013) which is available at: <u>http://www.lincolninst.edu/pubs/2245_Preventing-House-Price-Bubbles</u>.
- Used in a Webinar for FI Consulting in December <u>http://www.ficonsulting.com/Regional-Price-Bubbles</u>
- References New Credit Risk Model from Collateral Analytics <u>http://collateralanalytics.com/key-drivers-of-variations-in-the-credit-risk-spread-among-markets/</u>

Detecting Price Bubbles as They Develop

- Key Conclusion #1: Wide variations among markets even within large MSAs.
- Key Conclusion #2: Local housing market conditions play a substantial role in house price patterns.
- Key Conclusion #3: Hard to predict but we do know something. And we can debunk the notion of a national housing market.

Perspectives on Bubble Detection

Bubble definition: Persistent and *unsustainable* departure of market prices from prices dictated by fundamentals

Detection is inherently difficult because bubbles are extreme events

Black Swan Blindness also plays a role

Local market conditions affect house price bubbles

- Housing markets contain a substantial local component, which may be hard to measure/capture
- These affect responses to national shocks
- Financial market analogy: S&P versus individual stocks

The role of momentum

Model and Estimation Approach

1st stage VEC to estimate deviations of the level of house prices from the amount suggested by the "fundamentals"

 P = f(employment, income per capita, 10 yr Treasury, 1 yr Treasury, MSA fixed effects)

3 equation VAR

- Dependent variables are the growth rates in Real house prices;
 Total employment; Real income per capita
- Right hand side variables: VEC residuals; 3 lags of each dependent variable; FE

Multiple Time Periods and MSA Groups

Simulation generates 500 paths per MSA per model

- Challenge is specifying key drivers
- Conduct our own "quasi" impulse response analysis

Model

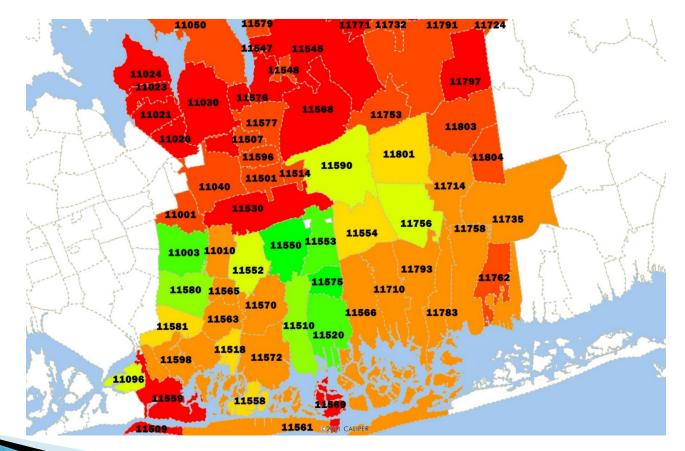
$$\log(HP_{it}) = \alpha_i + \sum_{j=1}^{3} \beta_j \log(Income_{it}) + \sum_{j=1}^{3} \gamma_i \log(Emp_{it}) + \delta_1(TB10_{t-1} - TB1_{t-1}) + \delta_2 TB10_t + \varepsilon_{it}^{EC}.$$

$$\log(Y_{it}) = \alpha_t + \alpha_{group} + \alpha_{EC} \hat{\varepsilon}_{it}^{EC} + \sum_{j=1}^3 \beta_j \log\left(\frac{HP_{it-j}}{HP_{it-1-j}}\right) + \sum_{j=1}^3 \gamma_j \log\left(\frac{Emp_{it-j}}{Emp_{it-1-j}}\right) + \sum_{j=1}^3 \theta_j \log\left(\frac{Income_{it-j}}{Income_{it-1-j}}\right) + \varepsilon_{it}.$$

Collateral Analytics

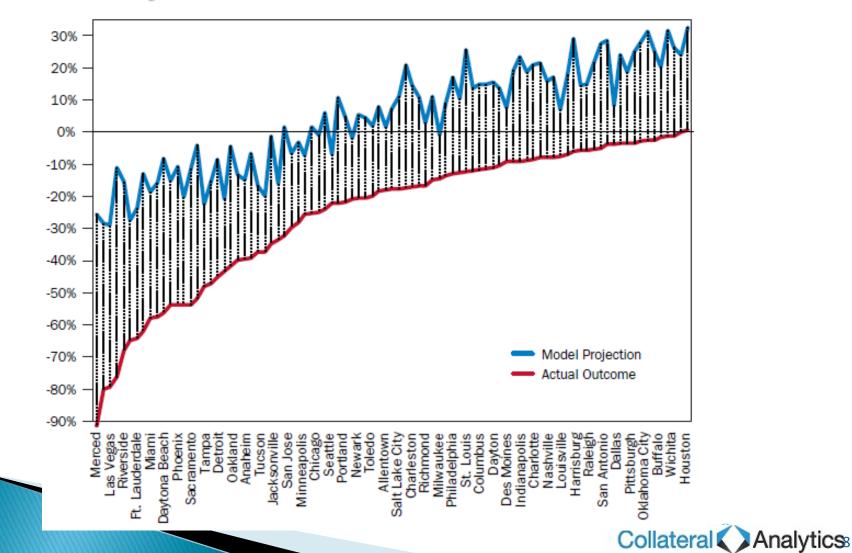
Share of Residences with Negative Equity

Red is low (<8%) and Green in high share (>27%)

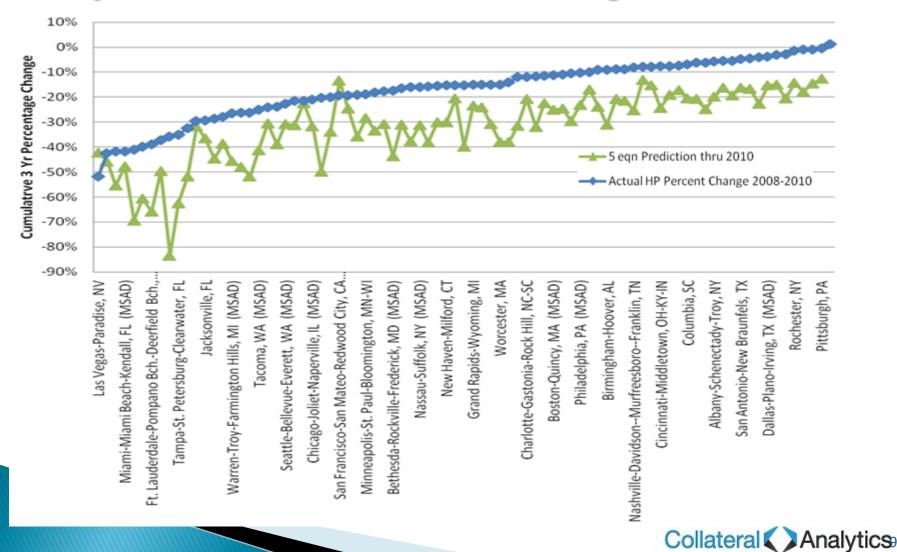


Collateral Analytics

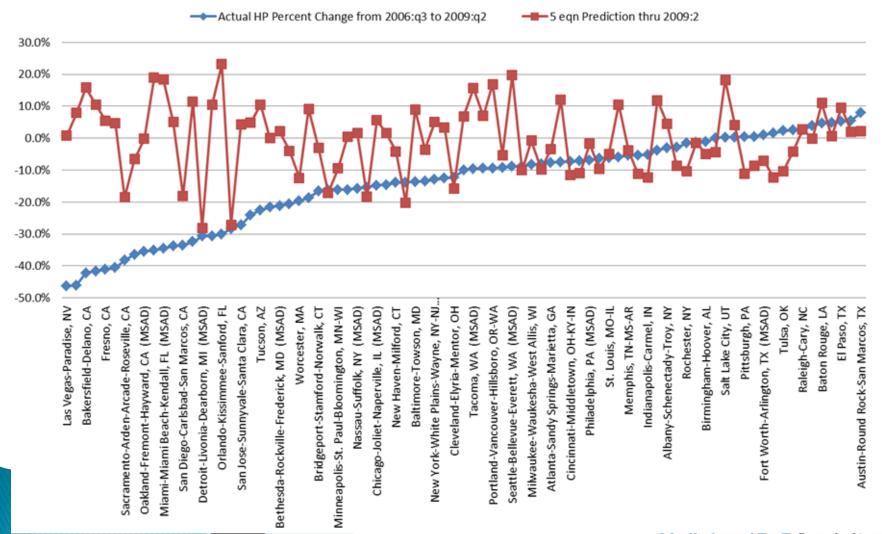
Model Projections vs. Actual Outcomes 2008-10



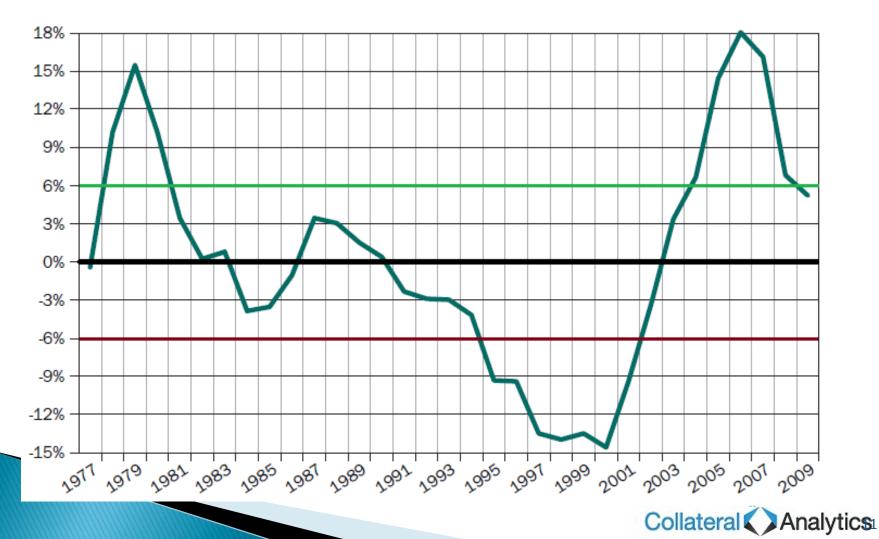
Projections vs. Outcomes for the Largest MSAs



Model Projections vs. Actual Outcomes 2006-09



Predictive Power of the Bubble Indicator: Difference Between Actual Prices and **Predicted Levels**



Key Conclusions on Bubble Detection

- Key Conclusion #1: The models provided some indication that a bubble was emerging.
- Key Conclusion #2: The evidence was stronger for some markets than for others, and the predictions were sensitive to the specific models used and time periods covered.
- Key Conclusion #3: While not perfect, the results revealed information that may have been helpful to policy makers as they developed programs in mid-crisis and as they now consider options for preventing new house price bubbles from forming.

Implications for Credit Risk for Regulators -Countercyclical Capital Policies

Glimpse of policy debate

- Shared conclusion with Greenspan Monetary Policy not the primary culprit. Much more complex set of factors and wide ranging outcomes among markets
- Flip side of this conclusion: Neither is it very effective in combatting bubbles owing to the large variations among markets

Key issues

- How to predict prices
- How to define a bubble

Implications for Credit Risk Management for Financial Institutions

- Incorporate local market conditions in loan pricing and capital allocation, and work harder to price the risk in your local market. Banks must do a better job of pricing in "their own backyard."
- Note on Concentrations in CA White Paper about Fed Guidance

Option 1: Simple, Transparent and Rules Based

- FHFA Paper by Smith and Weiher entitled "Countercyclical Capital Regime: A Proposed Design and Empirical Evaluation" http://www.fhfa.gov/webfiles/24538/countercyclicalcapitalregime122.pdf
- Focuses upon trends at the state level in house prices
- Substantial deviations above trend would trigger an increase in capital
- Substantial deviations below trend would trigger capital reductions

Option 2: Use Predictions of Econometric Models

- This would be more complex, less transparent, and likely less rules-based
- Judgments of model builders would play a role
- Econometric models of the type estimated by Follain and Giertz fit this type.
- Examples of the output of our first model regarding the size of stress scenarios are in Table 2

5th Percentile Forecasts for Three Time Periods

MSA	1996-1998	2001-2003	2008-2010
Austin-Round Rock-San Marcos	-2	.9% 1.4	% 1.8%
Birmingham-Hoover	-3	.0% -11.9	% 0.1%
Cambridge-Newton-Framingham	3	.6% 7.7	% -15.3%
Chicago-Joliet-Naperville	-12	.8% -10.6	% -15.1%
Columbus	-13	.3% -10.8	% -7.4%
Detroit-Livonia-Dearborn	-14	.7% -21.7	% -25.5%
Ft. Lauderdale-Pompano Bch.	-11	.1% -9.5	% -41.5%
Indianapolis-Carmel	-7	.3% -7.2	% -2.5%
Las Vegas-Paradise	-9	.3% -9.2	% -33.5%
Memphis	-0	.3% -8.7	% 2.1%
Minneapolis-St. Paul-Bloomingto	-3	.7% -5.1	% -23.2%
New York-White Plains-Wayne	-2	.5% -0.8	% -19.4%
Oklahoma City	3	.3% 3.3	% 12.2%
Phoenix-Mesa-Glendale	-2	.2% -8.4	% -30.3%
Providence-New Bedford-Fall R	-9	.0% 3.6	% -23.8%
Riverside-San Bernardino-Ontari	-32	.8% -6.1	% -44.9%
Salt Lake City	-14	.6% -30.2	% -1.4%
San Francisco-San Mateo-Redw	-12	.4% 8.1	% -17.3%
Seattle-Bellevue-Everett	-25	.6% -19.5	% -12.8%
Tucson	-10	.7% -14.8	% -21.6%
Washington-Arlington-Alexandria	-17	.3% 1.7	% -27.3%
Mean	-9	.1% -4.5	% -15.0%
Median	-8	.5% -4.8	% -15.1%
Max		.6% 16.0	
Min		.8% -30.2	
Std. Dev.	8	.3% 9.2	% 14.5%

How This Would Work In Practice

- Follain and Sklarz 2005 provide example of pricing credit risk among MSAs that differ in terms of their potential for a bubble.
- We recently announced a new Credit Risk Model at Collateral Analytics that expands upon these ideas and make use of the enormous amount of data and AVM products produced by CA
 - We use nonagency mortgage data assembled from Lewtan to estimate models of default and prepayment at the MSA level.
 - The model incorporates CA generated house price scenarios specific to each MSA.
 - CLTV is updated at the zip code level in most cases
 - It also relies upon REO Discount estimates at the zip level
 - Our focus has been on the 20 CBSAs in the Case-Shiller Index

Exhibit 1: CRS by CBSA

- Exhibit 1 contains estimates of the Credit Risk Spread for 20 CBSA.
- The CRS = EL + (r -risk free rate)*Capital
- CRS 1 uses CBSA specific HP scenarios and default and prepayment equations
- CRS 3 uses the same default/prepayment equations based upon a pooled model and CBSA specific HP scenarios
- They are distinguished by FRM vs ARMs
- These apply to a 80/740 Prime Mortgage but we can generate these for any combination and other mortgage traits

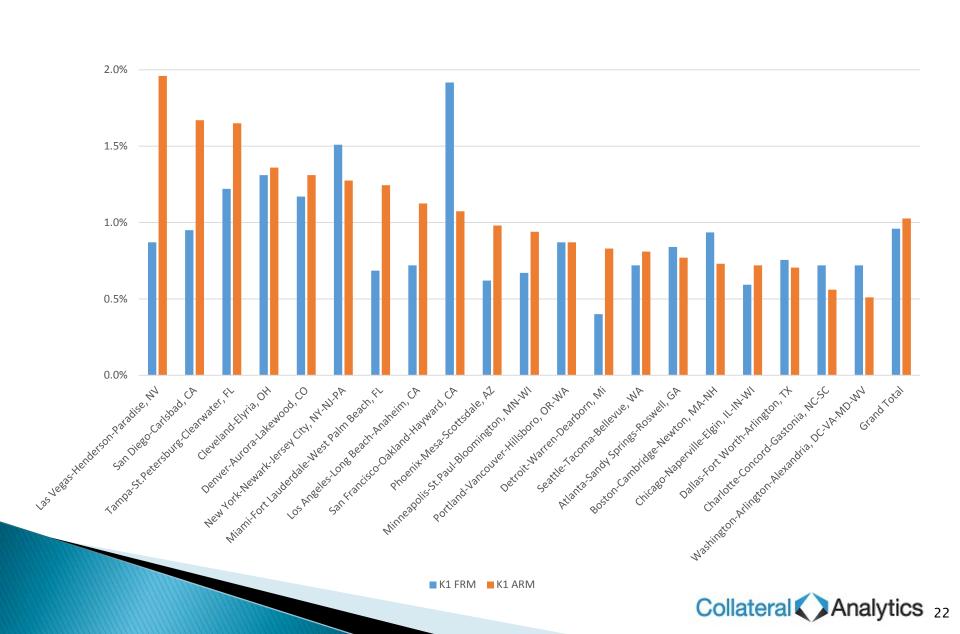
Exhibit 1: Credit Risk Spreads from CA Credit Risk Model for a 80/740 Prime Mortgage (basis points)						
	FF	FRM		ARM		
CBSA Name	CRS 1	CRS 3	CRS 1	CRS 3		
Atlanta-Sandy Springs-Roswell, GA	28	32	19	44		
Boston-Cambridge-Newton, MA-NH	23	34	19	53		
Charlotte-Concord-Gastonia, NC-SC	23	29	18	50		
Chicago-Naperville-Elgin, IL-IN-WI	18	29	20	46		
Cleveland-Elyria, OH	34	30	35	46		
Dallas-Fort Worth-Arlington, TX	24	28	21	47		
Denver-Aurora-Lakewood, CO	36	15	34	31		
Detroit-Warren-Dearborn, Mi	13	13	25	28		
Las Vegas-Henderson-Paradise, NV	23	24	34	37		
Los Angeles-Long Beach-Anaheim, CA	15	27	20	43		
Miami-Fort Lauderdale-West Palm Beach, FL	16	24	26	39		
Minneapolis-St.Paul-Bloomington, MN-WI	22	24	27	44		
New York-Newark-Jersey City, NY-NJ-PA	38	43	35	64		
Phoenix-Mesa-Scottsdale, AZ	17	25	21	37		
Portland-Vancouver-Hillsboro, OR-WA	23	30	22	52		
San Diego-Carlsbad, CA	20	32	28	53		
San Francisco-Oakland-Hayward, CA	45	31	20	51		
Seattle-Tacoma-Bellevue, WA	18	32	22	55		
Tampa-St.Petersburg-Clearwater, FL	28	30	37	47		
Washington-Arlington-Alexandria, DC-VA-MD-						
WV	15	31	9	52		
Grand Total	25	29	24	47		
CRS 1 uses CBSA def/prep eqns and MSA HP Scer	narios					
CRS 3 uses pooled eqns and MSA HP Scenarios						

Exhibit 2: Capital Ratios by CBSA

- This plots the capital ratios by CBSA
- Ranked from the largest to the smallest capital ratios for ARMs
- Applies to a 740 credit score 80 LTV
- This is based upon CBSA specific HP Scenarios and Default/Prepayment Equations
- The range is substantial: .5 to 2 percent for ARMs and about the same for FRMs

Exhibit 2: Capital 1 by CBSA and ARM/FRm

2.5%



Three Short Articles on CA Web Site about the CA Credit Risk Model

- Measuring Variations in Credit Risk among Markets
 - <u>http://collateralanalytics.com/measuring-variations-in-credit-risk-among-markets-a-new-product-from-collateral-analytics-2/</u>
- Drivers of Variations in the CRS among Markets
 - <u>http://collateralanalytics.com/measuring-variations-in-credit-risk-among-markets-a-new-product-from-collateral-analytics-2/</u>
- Regional Impacts of Credit Scores on CR Spreads
 - <u>http://collateralanalytics.com/adjusting-mortgage-rates-to-lower-credit-scores-using-cas-credit-risk-model/</u>
- We continue to make improvements and welcome any feedback that you may have

Similar Approach being Done with Robert Dunsky (FHFA) and Seth Giertz

- Same basic approach
- Use FHFA Default and Prepayment Model
- Use Representative Portfolios of GSE Mortgages
- Use Follain and Giertz HP Scenarios

Our Greatest Challenged and Opportunity

- Technically challenging but that's not all.
- The greatest challenge is whether decision makers would be able to implement tougher stress tests as a bubble is developing.
- Black Swan Blindness by Follain 2012.
- Counteracting these challenges is the extraordinary amounts of data available today to analyze the drivers of local housing markets.

Selected References

- "Countercyclical Capital Regime: A Proposed Design and Empirical Evaluation" by Scott Smith and Jesse Weiher (2012) is available at:
 - <u>http://www.fhfa.gov/webfiles/24538/countercyclicalcapitalregim</u> <u>e122.pdf</u>
- The Search for Capital Adequacy in the Mortgage Market: A Case of Black Swan Blindness" by James R. Follain (2013) is available at: <u>http://www.emeraldinsight.com/journals.htm?articleid=17093104</u>
- Preventing House Price Bubbles: Lessons from the 2006-2012 Bust by James R. Follain and Seth H. Giertz (2013) is available at: <u>http://www.lincolninst.edu/pubs/2245_Preventing-House-Price-Bubbles</u>
- The Lincoln Institute of Land Policy is a leading resource for key issues concerning the use, regulation, and taxation of land, find our more here: <u>http://www.lincolninst.edu/aboutlincoln/</u>
- Follain and Sklarz (2005), Mortgage Banking Magazine

James Follain SVP of Research and Development jfollain@collateralanalytics.com 703-244-7418 (cell) 518-280-6397 (office) collateralanalytics.com