Stochastic Taxation and Pricing of CMBS REITs

 Robert H. EdelsteinThe University of California at Berkeley, Haas School of Business

Konstantin Magin

The University of California at Berkeley, Center for Risk Management Research

$$
\text { May 11, } 2014
$$

SUMMARY OF FINDINGS

- Major Innovation: Introduction of Stochastic Taxation
- After-tax Risk Premium resolves a substantial part of the Equity Premium Puzzle
- Coefficient of Relative Risk Aversion: 7.43-10.59

PRESENTATION STRATEGY

- Review CCAPM
- Outline the Equity Risk Premium Puzzle
- Introducing Stochastic Taxation into the Analysis
- Determining the Coefficient of Risk Aversion

SUMMARY OF CCAPM

Theorem (Lucas Tree-Model (1978)): Assume

- Preferences:

$$
\begin{gathered}
U_{i}\left(c_{i}\right)=u_{i}\left(c_{i t}\right)+E\left[\sum_{T=1}^{\infty} b_{i}^{T} u_{i}\left(c_{i t+T}\right)\right] \forall i \in I . \\
u_{i}^{\prime}(\cdot)>0, u_{i}^{\prime \prime}(\cdot)<0 \forall i \in I .
\end{gathered}
$$

- Budget Constraint:

$$
\begin{gathered}
\sum_{k=1}^{n} z_{i k t+T}\left(p_{k t+T}+d_{k t+T}\right)=c_{i t+T}+\sum_{k=1}^{n} z_{i k t+T+1} p_{k t+T} \forall i \in I, \\
\forall T=0, \ldots, \infty .
\end{gathered}
$$

- Supply of Assets:

$$
\sum_{i \in l} z_{i k t+T}=\bar{z}_{k t+T}>0 \forall k=1, \ldots, n \forall T=0, \ldots, \infty
$$

Then

- Pricing Equation:

$$
p_{k t}=E\left[\frac{b_{i} u_{i}^{\prime}\left(c_{i t+1}\right)}{u_{i}^{\prime}\left(c_{i t}\right)}\left(p_{k t+1}+d_{k t+1}\right)\right] \forall k=1, \ldots, n .
$$

- Efficient Market Hypothesis:

$$
p_{k t}=E\left[\sum_{T=1}^{\infty} \frac{b_{i}^{T} u_{i}^{\prime}\left(c_{i t+T}\right)}{u_{i}^{\prime}\left(c_{i t}\right)} d_{k t+T}\right] \forall k=1, \ldots, n .
$$

- Euler Equation:

$$
\begin{gathered}
E\left[\frac{b_{i} u_{i}^{\prime}\left(c_{i t+1}\right)}{u_{i}^{\prime}\left(c_{i t}\right)} R_{k t+1}\right]=1 \forall k=1, \ldots, n, \\
E\left[\frac{b_{i} u_{i}^{\prime}\left(c_{i t+1}\right)}{u_{i}^{\prime}\left(c_{i t}\right)}\right] R_{f}=1 .
\end{gathered}
$$

COROLLARY 1: Assume

- Lucas (1978) CCAPM
- $u_{i}^{\prime}\left(c_{i t+1}\right)=\lambda_{i} \cdot R_{m t+1}$

Then

- CAPM:

$$
E\left[R_{k t+1}-R_{f}\right]=\beta_{k} \cdot E\left[R_{m t+1}-R_{f}\right] \forall k=1, \ldots, n .
$$

COROLLARY 2: Assume

- Lucas (1978) CCAPM
- Identical Agents

Then

- Efficient Market Hypothesis:

$$
p_{k t}=E\left[\sum_{T=1}^{\infty} \frac{b^{T} u^{\prime}\left(\sum_{k=1}^{n} d_{k t+T}\right)}{u^{\prime}\left(\sum_{k=1}^{n} d_{k t}\right)} d_{k t+T}\right] .
$$

COROLLARY 3: Assume

- Lucas (1978) CCAPM
- Identical Agents
- CRRA: $u(c)=\frac{c^{1-a}}{1-a}$

Then

- Efficient Market Hypothesis:

$$
p_{k t}=E\left[\sum_{T=1}^{\infty} b^{T}\left(\frac{\sum_{k=1}^{n} d_{k t+T}}{\sum_{k=1}^{n} d_{k t}}\right)^{-a} d_{k t+T}\right] .
$$

COROLLARY 4: Assume

- Lucas (1978) CCAPM
- Identical Agents
- CRRA: $u(c)=\frac{c^{1-a}}{1-a}$
- $\ln \left(c_{t+T}\right) \sim N\left(\mu_{c}, \sigma_{c}\right) \forall T=1, \ldots, \infty$
- $n=1$

Then

$$
\begin{aligned}
& p_{k t}=E\left[\sum_{T=1}^{\infty} b^{T}\left(\frac{\sum_{k=1}^{n} d_{k t+T}}{\sum_{k=1}^{n} d_{k t}}\right)^{1-a}\right] \cdot d_{k t}, \\
& \frac{d_{k t+T}}{p_{k t+T}}=\frac{c_{t+T}}{p_{k t+T}}=\text { constant } \forall T=1, \ldots, \infty .
\end{aligned}
$$

THEOREM (RUBINSTEIN (1976)): Assume

- Lucas (1978) CCAPM
- Identical Agents
- CRRA: $u(c)=\frac{c^{1-a}}{1-a}$
- $\ln \left(c_{t+T}\right) \sim N\left(\mu_{c}, \sigma_{c}\right) \forall T=1, \ldots, \infty$
- $\ln \left(R_{k t+T}\right) \sim N\left(\mu_{k}, \sigma_{k}\right) \forall T=1, \ldots, \infty$
- $\rho_{\ln \left(R_{k t+T}\right), \ln \left(c_{t+T}\right)} \geqslant 0 \forall T=1, \ldots, \infty$

Then

$$
\ln E\left[R_{k t+1}\right]-\ln R_{f}=a \cdot \operatorname{cov}\left[\ln R_{k t+1}, \ln \left(\frac{c_{t+1}}{c_{t}}\right)\right]
$$

and

- Black-Scholes-Rubinstein Formula:
$\operatorname{Call}\left(p_{k t}, S, T, \sigma_{k}, \bar{D}, r f\right)=\frac{1}{(1+\bar{D})^{T}} p_{k t} N\left(Z_{k s}+\sqrt{T} \sigma_{k}\right)-\frac{S}{(1+r f)^{T}} N\left(Z_{k s}\right)$,

$$
Z_{k s}=\frac{\ln \frac{P_{k t}}{s}+\ln \frac{1}{(1+\bar{D})^{T}}+\ln R_{f}^{T}}{\sqrt{T} \sigma_{k}}-\frac{1}{2} \sqrt{T} \sigma_{k} .
$$

EQUITY PREMIUM PUZZLE

- The coefficient of relative risk aversion:

$$
r r(c)=\left[-\frac{u^{\prime \prime}(c) c}{u^{\prime}(c)}\right] .
$$

LEMMA: Assume

- $u(c)=\frac{c^{1-a}}{1-a}$

Then

- $u^{\prime}(c)=c^{-a}$
- $u^{\prime \prime}(c)=-a \cdot c^{-a-1}$
- $r r(c)=\left[-\frac{-a \cdot c^{-a-1} \cdot c}{c^{-a}}\right]=a$
- Equity Premium Puzzle for $\beta=1$ Portfolio, (Mehra and Prescott (1985) and Mehra (2003)):

$$
a=\frac{\ln \left(E\left[R_{m t+1}\right]\right)-\ln \left(R_{f}\right)}{\operatorname{cov}\left[\ln \left(R_{m t+1}\right), \ln \left(\frac{C_{t+1}}{C_{t}}\right)\right]}=\frac{0.07-0.01}{0.00125}=47.6
$$

CALCULATING TAX YIELD FOR S\&P 500

Components of tax yield:

- Dividend tax
- Short-term capital gains tax
- Long-term capital gains tax

Tax yield for the S\&P 500 (Sialm (2008)):

$$
\begin{gathered}
T Y_{t+1}=\frac{\tau_{t+1}^{d} d_{m t+1}+\tau_{t+1}^{S C G} S C G_{m t+1}+\tau_{t+1}^{L C G} L C G_{m t+1}}{p_{p t}}= \\
=\tau_{m t+1}^{d} \cdot \frac{d_{m t+1}}{p_{m t}}+\tau_{t+1}^{S C G} \cdot \frac{S C G_{m t+1}}{p_{m t}}+\tau_{t+1}^{L C G} \cdot \frac{L C G_{m t+1}}{p_{m t}}= \\
=\tau_{m t+1}^{d} \cdot 0.045+\tau_{t+1}^{S C G} \cdot 0.001+\tau_{t+1}^{L C G} \cdot 0.018,
\end{gathered}
$$

where
$p_{m t}$ is the price per share of the market portfolio of risky assets, $d_{m t}$ is the dividend paid per share of the market portfolio of risky assets, $R_{m t+1}=1+r_{m t+1}$ is the gross rate of return on the market portfolio of risky assets,
τ_{t+1}^{d} is the dividend tax,
$\tau_{t+1}^{S C G}$ is the tax on short-term capital gains,
$\tau_{t+1}^{L C G}$ is the tax on long-term capital gains, $S C G_{t+1}$ are realized short-term capital gains, $L C G_{t+1}$ are realized long-term capital gains, and $T Y_{t+1}$ is the tax yield.

- The dividend yield for the market portfolio of risky assets:

$$
\frac{d_{m t+1}}{p_{m t}}=0.045
$$

- The realized short-term capital gains yield for the market portfolio of risky assets:

$$
\frac{S C G_{m t+1}}{P_{m t}}=0.001
$$

- The realized long-term capital gains yield for the market portfolio of risky assets:

$$
\frac{L C G_{m t+1}}{p_{m t}}=0.018
$$

- Tax yield for the S\&P 500 (Sialm (2008)):

$$
T Y_{t+1}=\tau_{m t+1}^{d} \cdot 0.045+\tau_{t+1}^{S C G} \cdot 0.001+\tau_{t+1}^{L C G} \cdot 0.018
$$

- The $\operatorname{tax} \tau_{t+1}$ imposed on the wealth of the S\&P 500 stockholders (Magin(2014)):

$$
\begin{gathered}
\tau_{t+1}=\frac{\tau_{t+1}^{d} d_{m t+1}+\tau_{t+1}^{S C G} S C G_{t+1}+\tau_{t+1}^{L L C G} L C G_{t+1}}{p_{m+1}+d_{m t+1}}= \\
\underbrace{\frac{\tau_{t+1}^{d} d_{m t+1}+\tau_{t+1}^{S C G} S C G_{t+1}+\tau_{t+1}^{L L G} L C G_{t+1}}{p_{m t}}}_{\text {Tax Yield, } T Y_{t+1}} \cdot \underbrace{\frac{p_{m t}}{p_{m t+1}+d_{m t+1}}}_{1 / R_{m t+1}}=\frac{T Y_{t+1}}{R_{m t+1}},
\end{gathered}
$$

- Estimate for the tax τ_{t+1} imposed on the wealth of the S\&P 500 stockholders for 1913-2007:

$$
\tau_{t+1}=\underbrace{\left(\tau_{t+1}^{d} \cdot 0.045+\tau_{t+1}^{S C G} \cdot 0.001+\tau_{t+1}^{L C G} \cdot 0.018\right)}_{\text {Tax Yield, } T Y_{t+1}} \cdot \frac{1}{R_{m t+1}}
$$

CALCULATING TAX YIELD FOR CMBS REITs

- About 20% of all stock shares are held in taxable accounts.
- Stock dividends are on average taxed at the ordinary income tax rate of about 20%.
- The average effective dividend tax rate estimate:

$$
\tau_{t+1}^{d}=0.2 \cdot 0.2=0.04
$$

- REITs distribute at least 90% of taxable income to shareholders in the form of dividends.
- REITs dividend distributions constitute a significant portion of the overall before-tax return from REITs.
- REITs dividends are ostensibly taxed as ordinary income.
- Expect that the typical investor in REITs may be subject to below average ordinary income tax rates.
- Many tax exempt institutional investors may be attracted to REITs.
- The average dividend tax rate appropriate for the S\&P, in general, may not be appropriate for REITs investors.
- The average effective dividend tax rate estimate:

$$
\tau_{c m b s ~ r e i t s ~}^{t+1}, ~=\frac{1}{2} \cdot 0.2 \cdot 0.2=0.02
$$

- The average dividend yield for CMBS REITs is more than twice that of the average dividend yield for S\&P 500 stocks: 0.123 vs. 0.45 .

FIGURE 1: DIVIDEND YIELD FOR CMBS REITs AND S\&P 500 FOR 2000-2013

TABLE 1: TAX YIELD PARAMETERS

	S\&P 500	Equity REITs	CMBS REITs
$\frac{d_{k t+1}}{p_{k t}}$	0.045	0.080	0.123
$\frac{S C G_{k t+1}}{\rho_{k t}}$	0.001	0.001	0.001
$\frac{L C G_{k t+1}}{p_{k t}}$	0.018	0.018	0.018
τ_{t+1}^{d}	$\tau_{m t+1}^{d}$	$\left[0.25 \cdot \tau_{m+1}^{d}, \tau_{m t+1}^{d}\right]$	$\left[0.25 \cdot \tau_{m t+1}^{d}, \tau_{m t+1}^{d}\right]$
$\tau_{t+1}^{S C G}$	$\tau_{m t+1}^{S C G}$	$\tau_{m t+1}^{S C G}$	$\tau_{m t+1}^{S C G}$
$\tau_{t+1}^{L C G}$	$\tau_{m t+1}^{L C G}$	$\tau_{m t+1}^{L C G}$	$\tau_{m t+1}^{L C G}$

- Tax Yield for CMBS REITs:

$$
\begin{gathered}
T Y_{c m b s} \text { reits } t+1= \\
=\frac{\tau_{c m b s \text { reits } t+1}^{d} d_{c m b s} \text { reits } t+1}{}+\tau_{t+1}^{S C G} S C G_{c m b s ~ r e i t s ~}^{t+1} \\
p_{c m b s}+\tau_{t+1}^{L C G} L C G_{c m b s \text { reits } t+1}
\end{gathered}=
$$

$\tau_{c m b s \text { reits } t+1}^{d} \cdot \frac{d_{c m b s \text { reits } t+1}}{p_{c m b s \text { reits } t}}+\tau_{t+1}^{S C G} \cdot \frac{S C G_{c m b s \text { reits } t+1}}{p_{c m b s \text { reits } t}}+\tau_{t+1}^{L C G} \cdot \frac{L C G_{c m b s} \text { reits } t+1}{p_{c m b s \text { reits } t}}=$

$$
=0.02 \cdot 0.123+\tau_{t+1}^{S C G} \cdot 0.001+\tau_{t+1}^{L C G} \cdot 0.018
$$

- The dividend yield for CMBS REITs:

$$
\frac{d_{c m b s} \text { reits } t+1}{p_{\text {cmbs reits } t}}=0.123
$$

- The realized short-term capital gains yield for CMBS REITs:

$$
\frac{S C G_{c m b s} \text { reits } t+1}{p_{\text {cmbs reits } t}}=0.001
$$

- The realized long-term capital gains yield for CMBS REITs:

$$
\frac{L C G_{c m b s} \text { reits } t+1}{p_{\text {cmbs reits } t}}=0.018
$$

- Tax Yield for CMBS REITs:

$$
T Y_{\text {cmbs reits } t+1}=0.02 \cdot 0.123+\tau_{t+1}^{S C G} \cdot 0.001+\tau_{t+1}^{L C G} \cdot 0.018
$$

- The mean tax yield for shareholders of CMBS REITs:

$$
E\left[T Y_{c m b s} \text { reits } t+1\right]=0.0061
$$

ESTIMATING EXPECTED AFTER-TAX RISK PREMIUMS AND THE COEFFICIENT OF RELATIVE RISK AVERSION FOR CMBS REITs INVESTORS

- Traditional CCAPM Rubinstein (1976) and Lucas (1978) without insecure property rights:

$$
a=\frac{\ln \left(E\left[R_{\text {cmbs reits } t+1}\right]\right)-\ln \left(R_{f}\right)}{\operatorname{COV}\left[\ln \left(R_{\text {cmbs reits } t+1}\right), \ln \left(\frac{C_{t+1}}{C_{t}}\right)\right]}=\frac{0.7 \cdot 0.06}{0.00125}=33.6000
$$

- Fama and French (2002) dividend growth model:

$$
\begin{aligned}
& \overbrace{E\left[R_{\text {cmbs reits } t+1}\right]-R_{f}}^{0.7 \cdot 0.0255}=\overbrace{\beta_{\text {cmbs reits }}}^{0.7}(\overbrace{E\left[R_{m t+1}\right]-R_{f}}^{0.0255})=0.0178 . \\
& a=\frac{\overbrace{\ln \left(E\left[R_{\text {cmbs reits }} t+1\right]\right)-\ln \left(R_{f}\right)}^{0.7 \cdot 0.0255}}{\operatorname{COV}\left[\ln \left(R_{\text {cmbs reits } t+1}\right), \ln \left(\frac{C_{t+1}}{C_{t}}\right)\right]}=\frac{0.0178}{0.00125}=14.2400 .
\end{aligned}
$$

- Applying Magin (2014) CCAPM with stochastic taxes $\tau_{c m b s}$ reits ${ }_{t+1}$:

$$
\begin{gathered}
a= \\
\left.\left.\frac{\ln \left(E\left[R_{\text {cmbs reits } t+1}\right]\right)-\ln \left(R_{f}\right)+\ln \left(E \left[1-\tau_{c m b s ~ r e i t s ~}+1+1\right.\right.}{}\right]\right)+\operatorname{COV}\left[\ln \left(R_{\text {cmbs reits } t+1}\right), \ln \left(1-\tau_{c m b s} \text { reits } t+1\right.\right. \\
\operatorname{COV}\left[\ln \left(R_{\text {cmbs reits } t+1}\right), \ln \left(\frac{C_{t+1}}{C_{t}}\right)\right]+\operatorname{COV}\left[\ln \left(1-\tau_{\text {cmbs reits } t+1}\right), \ln \left(\frac{C_{t+1}}{C_{t}}\right)\right] \\
=\frac{0.7 \cdot 0.0255-0.0061+0.0002}{0.00125+0.0000}=9.5354 .
\end{gathered}
$$

TABLE 1: NUMERICAL SIMULATIONS

Effective Dividend Tax	Expected Tax Yield	After-tax Risk Premium	Coefficient of Relative Risk Aversion
0.04	0.0087	0.0091	7.4273
0.03	0.0074	0.0104	8.4803
0.02	0.0061	0.0117	9.5334
0.01	0.0048	0.0130	10.5865

TABLE 2: COEFFICIENTS OF RELATIVE RISK AVERSION FOR DIFFERENT ASSET CLASSES

Asset Class	Dividend Yield, \%	Coefficient of Relative Risk Aversion	Source
S\&P 500 Index Portfolio	4.50	3.76	Magin (2014)
Equity REITs	8.00	$4.32-6.29$	Edelstein and Magin (2013)
CMBS REITs	12.29	$7.43-10.59$	This Paper

